ﻻ يوجد ملخص باللغة العربية
The nodal-line semimetals have attracted immense interest due to the unique electronic structures such as the linear dispersion and the vanishing density of states as the Fermi energy approaching the nodes. Here, we report temperature-dependent transport and scanning tunneling microscope (spectroscopy) (STM[S]) measurements on nodal-line semimetal ZrSiSe.Our experimental results and theoretical analyses consistently demonstrate that the temperature induces Lifshitz transitions at 80 and 106 K in ZrSiSe, which results in the transport anomalies at the same temperatures. More strikingly, we observe a V-shaped dip structure around Fermi energy from the STS spectrum at low temperature,which can be attributed to co-effect of the spin-orbit coupling and excitonic instability. Our observations indicate the correlation interaction may play an important role in ZrSiSe, which owns the quasi-two-dimensional electronic structures.
The topological materials have attracted much attention recently. While three-dimensional topological insulators are becoming abundant, two-dimensional topological insulators remain rare, particularly in natural materials. ZrTe5 has host a long-stand
We use ultra-high resolution, tunable, VUV laser-based, angle-resolved photoemission spectroscopy (ARPES) and temperature and field dependent resistivity and thermoelectric power (TEP) measurements to study the electronic properties of WTe2, a compou
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear disp
Topological electrons in semimetals are usually vulnerable to chemical doping and environment change, which restricts their potential application in future electronic devices. In this paper we report that the type-II Dirac semimetal $mathbf{VAl_3}$ h
We report a detailed spectroscopic investigation of temperature-induced valence and structural instability of the mixed-stack organic charge-transfer (CT) crystal 4,4-dimethyltetrathiafulvalene-chloranil (DMTTF-CA). DMTTF-CA is a derivative of tetrat