ﻻ يوجد ملخص باللغة العربية
The topological materials have attracted much attention recently. While three-dimensional topological insulators are becoming abundant, two-dimensional topological insulators remain rare, particularly in natural materials. ZrTe5 has host a long-standing puzzle on its anomalous transport properties; its underlying origin remains elusive. Lately, ZrTe5 has ignited renewed interest because it is predicted that single-layer ZrTe5 is a two-dimensional topological insulator and there is possibly a topological phase transition in bulk ZrTe5. However, the topological nature of ZrTe5 is under debate as some experiments point to its being a three-dimensional or quasi-two-dimensional Dirac semimetal. Here we report high-resolution laser-based angle-resolved photoemission measurements on ZrTe5. The electronic property of ZrTe5 is dominated by two branches of nearly-linear-dispersion bands at the Brillouin zone center. These two bands are separated by an energy gap that decreases with decreasing temperature but persists down to the lowest temperature we measured (~2 K). The overall electronic structure exhibits a dramatic temperature dependence; it evolves from a p-type semimetal with a hole-like Fermi pocket at high temperature, to a semiconductor around ~135 K where its resistivity exhibits a peak, to an n-type semimetal with an electron-like Fermi pocket at low temperature. These results indicate a clear electronic evidence of the temperature-induced Lifshitz transition in ZrTe5. They provide a natural understanding on the underlying origin of the resistivity anomaly at ~135 K and its associated reversal of the charge carrier type. Our observations also provide key information on deciphering the topological nature of ZrTe5 and possible temperature-induced topological phase transition.
The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We present $ab$ $initio$ band calculations, electrical transport and angle-
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear disp
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals ho
Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2
Cubic SrTiO$_{3}$ becomes tetragonal below 105 K. The antiferrodistortive (AFD) distortion leads to clockwise and counter-clockwise rotation of adjacent TiO$_{6}$ octahedra. This insulator becomes a metal upon the introduction of extremely low concen