ﻻ يوجد ملخص باللغة العربية
We have systematically measured the transport properties in the layered rhodium oxide K$_{x}$RhO$_{2}$ single crystals ($0.5lesssim x lesssim 0.67$), which is isostructural to the thermoelectric oxide Na$_{x}$CoO$_{2}$. We find that below $x = 0.64$ the Seebeck coefficient is anomalously enhanced at low temperatures with increasing $x$, while it is proportional to the temperature like a conventional metal above $x=0.65$, suggesting an existence of a critical content $x^{*} simeq 0.65$. For the origin of this anomalous behavior, we discuss a filling-induced Lifshitz transition, which is characterized by a sudden topological change in the cylindrical hole Fermi surfaces at the critical content $x^*$.
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal
In the search for new spintronic materials with high spin-polarization at room-temperature, we have synthesized an osmium based double perovskite with a Curie-temperature of 725 K. Our combined experimental results confirm the existence of a sizable
We use ultra-high resolution, tunable, VUV laser-based, angle-resolved photoemission spectroscopy (ARPES) and temperature and field dependent resistivity and thermoelectric power (TEP) measurements to study the electronic properties of WTe2, a compou
In systems where electrons form both dispersive bands and small local spins, we show that changes of the spin configuration can tune the bands through a Lifshitz transition, resulting in a continuous metal-insulator transition associated with a progr
Taking the pseudobinary C15-Laves phase compound Ce(Fe$_{0.96}$Al$_{0.04}$)$_2$ as a paradigm for studying a ferromagnetic(FM) to antiferromagnetic(AFM) phase transition, we present interesting thermomagnetic history effects in magnetotransport measu