ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact stars in a SU(3) Quark-Meson Model

223   0   0.0 ( 0 )
 نشر من قبل Andreas Zacchi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses implies strong constraints on the properties of dense matter in the core of compact stars. Effective models of QCD aiming to describe neutron star matter can thereby be considerably constrained. In this context, a chiral quark-meson model based on a SU(3) linear $sigma$-model with a vacuum pressure and vector meson exchange is discussed in this work. The impact of its various terms and parameters on the equation of state and the maximum mass of compact stars are delineated to check whether pure quark stars with two solar masses are feasible within this approach. Large vector meson coupling constant and a small vacuum pressure allow for maximum masses of two or more solar masses. However, pure quark stars made of absolutely stable strange quark matter, so called strange stars, turn out to be restricted to a quite small parameter range.

قيم البحث

اقرأ أيضاً

We study the impact of the fermion vacuum term in the SU(3) quark meson model on the equation of state and determine the vacuum parameters for various sigma meson masses. We examine its influence on the equation of state and on the resulting mass rad ius relations for compact stars. The tidal deformability $Lambda$ of the stars is studied and compared to the results of the mean field approximation. Parameter sets which fulfill the tidal deformability bounds of GW170817 together with the observed two solar mass limit turn out to be restricted to a quite small parameter range in the mean field approximation. The extended version of the model does not yield solutions fulfilling both constraints. Furthermore, no first order chiral phase transition is found in the extended version of the model, not allowing for the twin star solutions found in the mean field approximation.
Aims: We present a new microscopic hadron-quark hybrid equation of state model for astrophysical applications, from which compact hybrid star configurations are constructed. These are composed of a quark core and a hadronic shell with a first-order p hase transition at their interface. The resulting mass-radius relations are in accordance with the latest astrophysical constraints. Methods: The quark matter description is based on a quantum chromodynamics (QCD) motivated chiral approach with higher-order quark interactions in the Dirac scalar and vector coupling channels. For hadronic matter we select a relativistic mean-field equation of state with density-dependent couplings. Since the nucleons are treated in the quasi-particle framework, an excluded volume correction has been included for the nuclear equation of state at suprasaturation density which takes into account the finite size of the nucleons. Results: These novel aspects, excluded volume in the hadronic phase and the higher-order repulsive interactions in the quark phase, lead to a strong first-order phase transition with large latent heat, i.e. the energy-density jump at the phase transition, which fulfils a criterion for a disconnected third-family branch of compact stars in the mass-radius relationship. These twin stars appear at high masses ($sim$ 2 M$_odot$) that are relevant for current observations of high-mass pulsars. Conclusions: This analysis offers a unique possibility by radius observations of compact stars to probe the QCD phase diagram at zero temperature and large chemical potential and even to support the existence of a critical point in the QCD phase diagram.
In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular e mphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars). In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in), the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.
The recent measurement of two solar mass pulsars has initiated an intense discussion on its impact on our understanding of the high-density matter in the cores of neutron stars. A task force meeting was held from October 7-10, 2013 at the Frankfurt I nstitute for Advanced Studies to address the presence of quark matter in these massive stars. During this meeting, the recent oservational astrophysical data and heavy-ion data was reviewed. The possibility of pure quark stars, hybrid stars and the nature of the QCD phase transition were discussed and their observational signals delineated.
The properties of neutron stars constituted of a crust of hadrons and an internal part of hadrons and kaon condensate are calculated within the quark-meson-coupling model. We have considered stars with nucleons only in the hadron phase and also stars with hyperons as well. The results are compared with the ones obtained from the non-linear Walecka model for the hadronic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا