ﻻ يوجد ملخص باللغة العربية
We study the impact of the fermion vacuum term in the SU(3) quark meson model on the equation of state and determine the vacuum parameters for various sigma meson masses. We examine its influence on the equation of state and on the resulting mass radius relations for compact stars. The tidal deformability $Lambda$ of the stars is studied and compared to the results of the mean field approximation. Parameter sets which fulfill the tidal deformability bounds of GW170817 together with the observed two solar mass limit turn out to be restricted to a quite small parameter range in the mean field approximation. The extended version of the model does not yield solutions fulfilling both constraints. Furthermore, no first order chiral phase transition is found in the extended version of the model, not allowing for the twin star solutions found in the mean field approximation.
The quark-meson model is investigated for the two- and three-flavor case extended by contributions of vector mesons under conditions encountered in core-collapse supernova matter. Typical temperature ranges, densities and electron fractions, as found
The recent observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses implies strong constraints on the properties of dense matter in the core of compact stars. Effective models of QCD aiming to describe neut
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which
The equations of state for neutron matter, strange and non-strange hadronic matter in a chiral SU(3) quark mean field model are applied in the study of slowly rotating neutron stars and hadronic stars. The radius, mass, moment of inertia, and other p
We study the chiral condensates in neutron star matter from nuclear to quark matter domain. We describe nuclear matter with a parity doublet model (PDM), quark matter with the Nambu--Jona-Lasino (NJL) model, and a matter at the intermediate density b