ترغب بنشر مسار تعليمي؟ اضغط هنا

A new quark-hadron hybrid equation of state for astrophysics - I. High-mass twin compact stars

166   0   0.0 ( 0 )
 نشر من قبل Sanjin Beni\\'c
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We present a new microscopic hadron-quark hybrid equation of state model for astrophysical applications, from which compact hybrid star configurations are constructed. These are composed of a quark core and a hadronic shell with a first-order phase transition at their interface. The resulting mass-radius relations are in accordance with the latest astrophysical constraints. Methods: The quark matter description is based on a quantum chromodynamics (QCD) motivated chiral approach with higher-order quark interactions in the Dirac scalar and vector coupling channels. For hadronic matter we select a relativistic mean-field equation of state with density-dependent couplings. Since the nucleons are treated in the quasi-particle framework, an excluded volume correction has been included for the nuclear equation of state at suprasaturation density which takes into account the finite size of the nucleons. Results: These novel aspects, excluded volume in the hadronic phase and the higher-order repulsive interactions in the quark phase, lead to a strong first-order phase transition with large latent heat, i.e. the energy-density jump at the phase transition, which fulfils a criterion for a disconnected third-family branch of compact stars in the mass-radius relationship. These twin stars appear at high masses ($sim$ 2 M$_odot$) that are relevant for current observations of high-mass pulsars. Conclusions: This analysis offers a unique possibility by radius observations of compact stars to probe the QCD phase diagram at zero temperature and large chemical potential and even to support the existence of a critical point in the QCD phase diagram.

قيم البحث

اقرأ أيضاً

We study the implications on compact star properties of a soft nuclear equation of state determined from kaon production at subthreshold energies in heavy-ion collisions. On one hand, we apply these results to study radii and moments of inertia of li ght neutron stars. Heavy-ion data provides constraints on nuclear matter at densities relevant for those stars and, in particular, to the density dependence of the symmetry energy of nuclear matter. On the other hand, we derive a limit for the highest allowed neutron star mass of three solar masses. For that purpose, we use the information on the nucleon potential obtained from the analysis of the heavy-ion data combined with causality on the nuclear equation of state.
We analyze the equation of state of 2+1 flavor lattice QCD at zero baryon density by constructing the simple quark-hadron hybrid model that has both quark and hadron components simultaneously. We calculate hadron and quark contribution separately and parameterizing those to match with LQCD data. Lattice data on the equation of state are decomposed into hadron and quark components by using the model. The transition temperature is defined by the temperature at which the hadron component is equal to the quark one in the equation of state. The transition temperature thus obtained is about 215 MeV and somewhat higher than the chiral and the deconfinement pseudocritical temperatures defined by the temperature at which the susceptibility or the absolute value of the derivative of the order parameter with respect to temperature becomes maximum.
The recent observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses implies strong constraints on the properties of dense matter in the core of compact stars. Effective models of QCD aiming to describe neut ron star matter can thereby be considerably constrained. In this context, a chiral quark-meson model based on a SU(3) linear $sigma$-model with a vacuum pressure and vector meson exchange is discussed in this work. The impact of its various terms and parameters on the equation of state and the maximum mass of compact stars are delineated to check whether pure quark stars with two solar masses are feasible within this approach. Large vector meson coupling constant and a small vacuum pressure allow for maximum masses of two or more solar masses. However, pure quark stars made of absolutely stable strange quark matter, so called strange stars, turn out to be restricted to a quite small parameter range.
We study the thermodynamics of two flavor color superconducting (2SC) quark matter within a nonlocal chiral quark model, using both instantaneous and covariant nonlocal interactions. For applications to compact stars, we impose conditions of electric and color charge neutrality as well as beta equilibrium and construct a phase transition to the hadronic matter phase described within the Dirac-Brueckner-Hartree-Fock (DBHF) approach. We obtain mass-radius relations for hybrid star configurations which fulfill modern observational constraints, including compact star masses above 2 M_sun.
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-indu ced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent bag constant to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs. bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا