ترغب بنشر مسار تعليمي؟ اضغط هنا

EMMI Rapid Reaction Task Force Meeting on Quark Matter in Compact Star

280   0   0.0 ( 0 )
 نشر من قبل J. Schaffner-Bielich
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent measurement of two solar mass pulsars has initiated an intense discussion on its impact on our understanding of the high-density matter in the cores of neutron stars. A task force meeting was held from October 7-10, 2013 at the Frankfurt Institute for Advanced Studies to address the presence of quark matter in these massive stars. During this meeting, the recent oservational astrophysical data and heavy-ion data was reviewed. The possibility of pure quark stars, hybrid stars and the nature of the QCD phase transition were discussed and their observational signals delineated.



قيم البحث

اقرأ أيضاً

The recent observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses implies strong constraints on the properties of dense matter in the core of compact stars. Effective models of QCD aiming to describe neut ron star matter can thereby be considerably constrained. In this context, a chiral quark-meson model based on a SU(3) linear $sigma$-model with a vacuum pressure and vector meson exchange is discussed in this work. The impact of its various terms and parameters on the equation of state and the maximum mass of compact stars are delineated to check whether pure quark stars with two solar masses are feasible within this approach. Large vector meson coupling constant and a small vacuum pressure allow for maximum masses of two or more solar masses. However, pure quark stars made of absolutely stable strange quark matter, so called strange stars, turn out to be restricted to a quite small parameter range.
The LIGO/Virgo detection of gravitational waves originating from a neutron-star merger, GW170817, has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the exis tence of two-solar-mass stars, we generate a generic family of neutron-star-matter Equations of State (EoSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EoSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that smallest allowed tidal deformability of a similar-mass star is $Lambda(1.4 M_odot) = 120$.
The detection of an unexpected $sim 2.5 M_{odot}$ component in the gravitational wave event GW190814 has puzzled the community of High-Energy astrophysicists, since in the absence of further information it is not clear whether this is the heaviest ne utron star ever detected or either the lightest black hole known, of a kind absent in the local neighbourhood. We show in this work a few possibilities for a model of the former, in the framework of three different quark matter models with and without anisotropy in the interior pressure. As representatives of classes of exotic solutions, we show that even though the stellar sequences may reach this ballpark, it is difficult to fulfill simultaneously the constraint of the radius as measured by the NICER team for the pulsar PSR J0030+0451. Thus, and assuming both measurements stand, compact neutron stars can not be all made of self-bound quark matter, even within anisotropic solutions which boost the maximum mass well above the $sim 2.5 M_{odot}$ figure. We also point out that a very massive compact star will limit the absolute maximum matter density in the present Universe to be less than 6 times the nuclear saturation value.
There are strong indications that the process of conversion of a neutron star into a strange quark star proceeds as a strong deflagration implying that in a few milliseconds almost the whole star is converted. Starting from the three-dimensional hydr odynamic simulations of the combustion process which provide the temperature profiles inside the newly born strange star, we calculate for the first time the neutrino signal that is to be expected if such a conversion process takes place. The neutrino emission is characterized by a luminosity and a duration that is typical for the signal expected from protoneutron stars and represents therefore a powerful source of neutrinos which could be possibly directly detected in case of events occurring close to our Galaxy. We discuss moreover possible connections between the birth of strange stars and explosive phenomena such as supernovae and gamma-ray-bursts.
130 - G. Lugones , A. G. Grunfeld 2018
We study the surface tension of hot, highly magnetized three flavor quark matter droplets, focusing specifically on the thermodynamic conditions prevailing in neutron stars, hot lepton rich protoneutron stars and neutron star mergers. We explore the role of temperature, baryon number density, trapped neutrinos, droplet size and magnetic fields within the multiple reflection expansion formalism (MRE), assuming that astrophysical quark matter can be described as a mixture of free Fermi gases composed by quarks $u$, $d$, $s$, electrons and neutrinos, in chemical equilibrium under weak interactions. We find that the total surface tension is rather unaffected by the size of the drop, but is quite sensitive to the effect of baryon number density, temperature, trapped neutrinos and magnetic fields (specially above $eB sim 5 times 10^{-3} mathrm{GeV}^2$). Surface tensions parallel and transverse to the magnetic field span values up to $sim$ 25 MeV/fm$^2$. For $T lesssim 100$ MeV the surface tension is a decreasing function of temperature but above 100 MeV it increases monotonically with $T$. Finally, we discuss some astrophysical consequences of our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا