ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of the sensitivity of a temperature sensor based on Fiber Bragg Gratings via weak value amplification

140   0   0.0 ( 0 )
 نشر من قبل Luis Jos\\'e Salazar Serrano
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a proof-of-concept experiment aimed at increasing the sensitivity of temperature sensors implemented with Fiber Bragg gratings by making use of a weak value amplification scheme. The technique requires only linear optics elements for its implementation, and appears as a promising method for extending the range of temperatures changes detectable to increasingly lower values than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of $mathrm{sim 0.035,nm/^{circ}C}$, a nearly fourfold increase in sensitivity over the same Fiber Bragg Grating system interrogated using standard methods.



قيم البحث

اقرأ أيضاً

In a quantum-noise limited system, weak-value amplification using post-selection normally does not produce more sensitive measurements than standard methods for ideal detectors: the increased weak value is compensated by the reduced power due to the small post-selection probability. Here we experimentally demonstrate recycled weak-value measurements using a pulsed light source and optical switch to enable nearly deterministic weak-value amplification of a mirror tilt. Using photon counting detectors, we demonstrate a signal improvement by a factor of $4.4 pm 0.2$ and a signal-to-noise ratio improvement of $2.10 pm 0.06$, compared to a single-pass weak-value experiment, and also compared to a conventional direct measurement of the tilt. The signal-to-noise ratio improvement could reach around 6 for the parameters of this experiment, assuming lower loss elements.
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value require s a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting $n$ ancillas, the postselection probability can be increased by a factor of $n$ while keeping the weak value fixed (compared to $n$ uncorrelated attempts with one ancilla), which is the optimal scaling with $n$ that is expected from quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive estimation to approximately saturate the optimal quantum Cram{e}r-Rao bound. To illustrate this protocol we provide simple quantum circuits that can be implemented using current experimental realizations of three entangled qubits.
We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in emph{all} the light exiting to the detector with a large deflection, thu s eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal, using a transverse beam filter and different cavity designs.
Weak value amplification (WVA) is a metrological protocol that amplifies ultra-small physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall meas urement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photo-detection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector. The precision achieved by WVA is six times higher than that of CM in our setup. Our results clear the way for the widespread use of WVA in applications involving the measurement of small signals including precision metrology and commercial sensors.
We study the possibility of varying the measured lifetime of a decaying particle based on the technique of weak value amplification in which an additional filtering process called postselection is performed. Our analysis made in a direct measurement scheme presented here shows that, for simple two-level systems, the lifetime may be prolonged more than three times compared to the original one, while it can also be shortened arbitrarily by a proper choice of postselection. This result is consistent with our previous analysis on the possible prolongation of the lifetime of B mesons that may be observed in laboratories, and suggests room for novel applications of weak value amplification beyond precision measurement conventionally considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا