ﻻ يوجد ملخص باللغة العربية
In a quantum-noise limited system, weak-value amplification using post-selection normally does not produce more sensitive measurements than standard methods for ideal detectors: the increased weak value is compensated by the reduced power due to the small post-selection probability. Here we experimentally demonstrate recycled weak-value measurements using a pulsed light source and optical switch to enable nearly deterministic weak-value amplification of a mirror tilt. Using photon counting detectors, we demonstrate a signal improvement by a factor of $4.4 pm 0.2$ and a signal-to-noise ratio improvement of $2.10 pm 0.06$, compared to a single-pass weak-value experiment, and also compared to a conventional direct measurement of the tilt. The signal-to-noise ratio improvement could reach around 6 for the parameters of this experiment, assuming lower loss elements.
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value require
We present a proof-of-concept experiment aimed at increasing the sensitivity of temperature sensors implemented with Fiber Bragg gratings by making use of a weak value amplification scheme. The technique requires only linear optics elements for its i
An experimental proposal is presented in which dark port post-selection together with weak measurements are used to enlarge the radiation pressure effect of a single photon on a mechanical oscillator placed in the middle of a Fabry-Perot cavity and i
Weak value amplification (WVA) is a metrological protocol that amplifies ultra-small physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall meas
We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that WVA experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order co