ترغب بنشر مسار تعليمي؟ اضغط هنا

Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification

178   0   0.0 ( 0 )
 نشر من قبل Liang Xu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak value amplification (WVA) is a metrological protocol that amplifies ultra-small physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall measurement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photo-detection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector. The precision achieved by WVA is six times higher than that of CM in our setup. Our results clear the way for the widespread use of WVA in applications involving the measurement of small signals including precision metrology and commercial sensors.


قيم البحث

اقرأ أيضاً

Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this pap er, we identify the major sources of imperfection an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attains the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the trade off between the three sources of imperfection that will allow true quantum-enhanced optical metrology.
We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in emph{all} the light exiting to the detector with a large deflection, thu s eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal, using a transverse beam filter and different cavity designs.
In a quantum-noise limited system, weak-value amplification using post-selection normally does not produce more sensitive measurements than standard methods for ideal detectors: the increased weak value is compensated by the reduced power due to the small post-selection probability. Here we experimentally demonstrate recycled weak-value measurements using a pulsed light source and optical switch to enable nearly deterministic weak-value amplification of a mirror tilt. Using photon counting detectors, we demonstrate a signal improvement by a factor of $4.4 pm 0.2$ and a signal-to-noise ratio improvement of $2.10 pm 0.06$, compared to a single-pass weak-value experiment, and also compared to a conventional direct measurement of the tilt. The signal-to-noise ratio improvement could reach around 6 for the parameters of this experiment, assuming lower loss elements.
The impact of measurement imperfections on quantum metrology protocols has been largely ignored, even though these are inherent to any sensing platform in which the detection process exhibits noise that neither can be eradicated, nor translated onto the sensing stage and interpreted as decoherence. In this work, we approach this issue in a systematic manner. Focussing firstly on pure states, we demonstrate how the form of the quantum Fisher information must be modified to account for noisy detection, and propose tractable methods allowing for its approximate evaluation. We then show that in canonical scenarios involving $N$ probes with local measurements undergoing readout noise, the optimal sensitivity dramatically changes its behaviour depending whether global or local control operations are allowed to counterbalance measurement imperfections. In the former case, we prove that the ideal sensitivity (e.g. the Heisenberg scaling) can always be recovered in the asymptotic $N$ limit, while in the latter the readout noise fundamentally constrains the quantum enhancement of sensitivity to a constant factor. We illustrate our findings with an example of an NV-centre measured via the repetitive readout procedure, as well as schemes involving spin-1/2 probes with bit-flip errors affecting their two-outcome measurements, for which we find the input states and control unitary operations sufficient to attain the ultimate asymptotic precision.
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value require s a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting $n$ ancillas, the postselection probability can be increased by a factor of $n$ while keeping the weak value fixed (compared to $n$ uncorrelated attempts with one ancilla), which is the optimal scaling with $n$ that is expected from quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive estimation to approximately saturate the optimal quantum Cram{e}r-Rao bound. To illustrate this protocol we provide simple quantum circuits that can be implemented using current experimental realizations of three entangled qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا