ﻻ يوجد ملخص باللغة العربية
We study the possibility of varying the measured lifetime of a decaying particle based on the technique of weak value amplification in which an additional filtering process called postselection is performed. Our analysis made in a direct measurement scheme presented here shows that, for simple two-level systems, the lifetime may be prolonged more than three times compared to the original one, while it can also be shortened arbitrarily by a proper choice of postselection. This result is consistent with our previous analysis on the possible prolongation of the lifetime of B mesons that may be observed in laboratories, and suggests room for novel applications of weak value amplification beyond precision measurement conventionally considered.
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value require
In a quantum-noise limited system, weak-value amplification using post-selection normally does not produce more sensitive measurements than standard methods for ideal detectors: the increased weak value is compensated by the reduced power due to the
In this paper, we explore the possibilities of realizing weak value amplification (WVA) using purely atomic degrees of freedom. Our scheme identifies the internal electronic states and external motional states of a single trapped $^{40}$Ca$^+$ ion as
An experimental proposal is presented in which dark port post-selection together with weak measurements are used to enlarge the radiation pressure effect of a single photon on a mechanical oscillator placed in the middle of a Fabry-Perot cavity and i
In a weak measurement with post-selection, a measurement value, called the weak value, can be amplified beyond the eigenvalues of the observable. However, there are some controversies whether the weak value amplification is practically useful or not