ﻻ يوجد ملخص باللغة العربية
In this work we study opinion formation in a population participating of a public debate with two distinct choices. We considered three distinct mechanisms of social interactions and individuals behavior: conformity, nonconformity and inflexibility. The conformity is ruled by the majority-rule dynamics, whereas the nonconformity is introduced in the population as an independent behavior, implying the failure to attempted group influence. Finally, the inflexible agents are introduced in the population with a given density. These individuals present a singular behavior, in a way that their stubbornness makes them reluctant to change their opinions. We consider these effects separately and all together, with the aim to analyze the critical behavior of the system. We performed numerical simulations in some lattice structures and for distinct population sizes, and our results suggest that the different formulations of the model undergo order-disorder phase transitions in the same universality class of the Ising model. Some of our results are complemented by analytical calculations.
We generalize the original majority-vote model by incorporating an inertia into the microscopic dynamics of the spin flipping, where the spin-flip probability of any individual depends not only on the states of its neighbors, but also on its own stat
Street demonstrations occur across the world. In Rio de Janeiro, June/July 2013, they reach beyond one million people. A wrathful reader of textit{O Globo}, leading newspaper in the same city, published a letter cite{OGlobo} where many social questio
We study the effects of free will and massive opinion of multi-agents in a majority rule model wherein the competition of the two types of opinions is taken into account. To address this issue, we consider two specific models (model I and model II) i
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira 1992 with heterogeneous agents on square lattice. By Monte Carlo simulations and finite-size scaling relations the critical
The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase trans