ﻻ يوجد ملخص باللغة العربية
The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase transition takes place and the topology of the underlying networks is still lacking. In the paper, we use the heterogeneous mean-field theory to derive the rate equation for governing the models dynamics that can analytically determine the critical noise $f_c$ in the limit of infinite network size $Nrightarrow infty$. The result shows that $f_c$ depends on the ratio of ${leftlangle k rightrangle }$ to ${leftlangle k^{3/2} rightrangle }$, where ${leftlangle k rightrangle }$ and ${leftlangle k^{3/2} rightrangle }$ are the average degree and the $3/2$ order moment of degree distribution, respectively. Furthermore, we consider the finite size effect where the stochastic fluctuation should be involved. To the end, we derive the Langevin equation and obtain the potential of the corresponding Fokker-Planck equation. This allows us to calculate the effective critical noise $f_c(N)$ at which the susceptibility is maximal in finite size networks. We find that the $f_c-f_c(N)$ decays with $N$ in a power-law way and vanishes for $Nrightarrow infty$. All the theoretical results are confirmed by performing the extensive Monte Carlo simulations in random $k$-regular networks, Erdos-Renyi random networks and scale-free networks.
We consider two consensus formation models coupled to Barabasi-Albert networks, namely the Majority Vote model and Biswas-Chatterjee-Sen model. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents ha
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira 1992 with heterogeneous agents on square lattice. By Monte Carlo simulations and finite-size scaling relations the critical
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira $1992$ on opinion-dependent network or Stauffer-Hohnisch-Pittnauer networks. By Monte Carlo simulations and finite-size scal
On ($3,12^2$), ($4,6,12$) and ($4,8^2$) Archimedean lattices, the critical properties of majority-vote model are considered and studied using the Glauber transition rate proposed by Kwak {it et all.} [Phys. Rev. E, {bf 75}, 061110 (2007)] rather than
We generalize the original majority-vote model by incorporating an inertia into the microscopic dynamics of the spin flipping, where the spin-flip probability of any individual depends not only on the states of its neighbors, but also on its own stat