ﻻ يوجد ملخص باللغة العربية
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira 1992 with heterogeneous agents on square lattice. By Monte Carlo simulations and finite-size scaling relations the critical exponents $beta/ u$, $gamma/ u$, and $1/ u$ and points $q_{c}$ and $U^*$ are obtained. After extensive simulations, we obtain $beta/ u=0.35(1)$, $gamma/ u=1.23(8)$, and $1/ u=1.05(5)$. The calculated values of the critical noise parameter and Binder cumulant are $q_{c}=0.1589(4)$ and $U^*=0.604(7)$. Within the error bars, the exponents obey the relation $2beta/ u+gamma/ u=2$ and the results presented here demonstrate that the majority-vote model heterogeneous agents belongs to a different universality class than the nonequilibrium majority-vote models with homogeneous agents on square lattice.
Here, the model of non-equilibrium model with two states ($-1,+1$) and a noise $q$ on simple square lattices proposed for M.J. Oliveira (1992) following the conjecture of up-down symmetry of Grinstein and colleagues (1985) is studied and generalized.
The existence of juxtaposed regions of distinct cultures in spite of the fact that peoples beliefs have a tendency to become more similar to each others as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we s
The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase trans
We consider two consensus formation models coupled to Barabasi-Albert networks, namely the Majority Vote model and Biswas-Chatterjee-Sen model. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents ha
We generalize the original majority-vote model by incorporating an inertia into the microscopic dynamics of the spin flipping, where the spin-flip probability of any individual depends not only on the states of its neighbors, but also on its own stat