ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of free will and massive opinion in majority rule model

374   0   0.0 ( 0 )
 نشر من قبل Wu Zhi-Xi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of free will and massive opinion of multi-agents in a majority rule model wherein the competition of the two types of opinions is taken into account. To address this issue, we consider two specific models (model I and model II) involving different opinion-updating dynamics. During the opinion-updating process, the agents either interact with their neighbors under a majority rule with probability $1-q$, or make their own decisions with free will (model I) or according to the massive opinion (model II) with probability $q$. We investigate the difference of the average numbers of the two opinions as a function of $q$ in the steady state. We find that the location of the order-disorder phase transition point may be shifted according to the involved dynamics, giving rise to either smooth or harsh conditions to achieve an ordered state. For the practical case with a finite population size, we conclude that there always exists a threshold for $q$ below which a full consensus phase emerges. Our analytical estimations are in good agreement with simulation results.



قيم البحث

اقرأ أيضاً

226 - F. W. S. Lima 2013
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira $1992$ on opinion-dependent network or Stauffer-Hohnisch-Pittnauer networks. By Monte Carlo simulations and finite-size scal ing relations the critical exponents $beta/ u$, $gamma/ u$, and $1/ u$ and points $q_{c}$ and $U^*$ are obtained. After extensive simulations, we obtain $beta/ u=0.230(3)$, $gamma/ u=0.535(2)$, and $1/ u=0.475(8)$. The calculated values of the critical noise parameter and Binder cumulant are $q_{c}=0.166(3)$ and $U^*=0.288(3)$. Within the error bars, the exponents obey the relation $2beta/ u+gamma/ u=1$ and the results presented here demonstrate that the majority-vote model belongs to a different universality class than the equilibrium Ising model on Stauffer-Hohnisch-Pittnauer networks, but to the same class as majority-vote models on some other networks.
In this work we study opinion formation in a population participating of a public debate with two distinct choices. We considered three distinct mechanisms of social interactions and individuals behavior: conformity, nonconformity and inflexibility. The conformity is ruled by the majority-rule dynamics, whereas the nonconformity is introduced in the population as an independent behavior, implying the failure to attempted group influence. Finally, the inflexible agents are introduced in the population with a given density. These individuals present a singular behavior, in a way that their stubbornness makes them reluctant to change their opinions. We consider these effects separately and all together, with the aim to analyze the critical behavior of the system. We performed numerical simulations in some lattice structures and for distinct population sizes, and our results suggest that the different formulations of the model undergo order-disorder phase transitions in the same universality class of the Ising model. Some of our results are complemented by analytical calculations.
We investigate majority rule dynamics in a population with two classes of people, each with two opinion states $pm 1$, and with tunable interactions between people in different classes. In an update, a randomly selected group adopts the majority opin ion if all group members belong to the same class; if not, majority rule is applied with probability $epsilon$. Consensus is achieved in a time that scales logarithmically with population size if $epsilongeq epsilon_c=frac{1}{9}$. For $epsilon <epsilon_c$, the population can get trapped in a polarized state, with one class preferring the $+1$ state and the other preferring $-1$. The time to escape this polarized state and reach consensus scales exponentially with population size.
Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]
It is known that individual opinions on different policy issues often align to a dominant ideological dimension (e.g. left vs. right) and become increasingly polarized. We provide an agent-based model that reproduces these two stylized facts as emerg ent properties of an opinion dynamics in a multi-dimensional space of continuous opinions. The mechanisms for the change of agents opinions in this multi-dimensional space are derived from cognitive dissonance theory and structural balance theory. We test assumptions from proximity voting and from directional voting regarding their ability to reproduce the expected emerging properties. We further study how the emotional involvement of agents, i.e. their individual resistance to change opinions, impacts the dynamics. We identify two regimes for the global and the individual alignment of opinions. If the affective involvement is high and shows a large variance across agents, this fosters the emergence of a dominant ideological dimension. Agents align their opinions along this dimension in opposite directions, i.e. create a state of polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا