ﻻ يوجد ملخص باللغة العربية
Hydrotropes are substances consisting of amphiphilic molecules that are too small to self assemble in equilibrium structures in aqueous solutions, but can form dynamic molecular clusters H bonded with water molecules. Some hydrotropes, such as low molecular weight alcohols and amines, can solubilize hydrophobic compounds in aqueous solutions at a mesoscopic scale, around 100 nm, with formation of long lived mesoscale droplets. In this work, we report on the studies of near critical and phase behavior of binary, 2,6-lutidine - H2O, and quasibinary, 2,6-lutidine - H2O - D2O, and tert-butanol - 2-butanol - H2O solutions in the presence of a solubilized hydrophobic impurity, cyclohexane. In additional to visual observation of fluid phase equilibria, two experimental techniques were used - light scattering and small - angle neutron scattering. It was found that the increase of the tert-butanol to 2-butanol ratio affects the liquid - liquid equilibria in the quasi-binary system at ambient pressure in the same way as the increase of pressure modifies the phase behavior of binary 2-butanol - H2O solutions. The correlation length of critical fluctuations near the liquid-liquid separation and the size of mesoscale droplets of solubilized cyclohexane were obtained by dynamic light scattering and by small - angle neutron scattering. It is shown that the effect of the presence of small amounts of cyclohexane on the near - critical phase behavior is twofold - the transition temperature changes towards increasing the two-phase domain, and long-lived mesoscopic inhomogeneities emerge in the macroscopically homogeneous domain. These homogeneities remain unchanged upon approach to the critical point of macroscopic phase separation and do not alter the universal nature of criticality. However, a larger amount of cyclohexane generates additional liquid-liquid phase separation at lower temperatures.
A systematics of grain boundary (GB) segregation transitions and critical phenomena has been derived to expand the classical GB segregation theory. This study uncovers when GB layering vs. prewetting transitions should occur and how they are related
If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter
Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionality rises from their internal structure and molecular arrangement. The key microscopic features that control such assem
The velocity of dislocations is derived analytically to incorporate and predict the intriguing effects induced by the preferential solute segregation and Cottrell atmospheres in both two-dimensional and three-dimensional binary systems of various cry
The dynamical behavior of the column that made up binary granular beads is investigated systematically by tracking the displacement of particles in the collapse process. An experimental setup is first devised to control the quasi-static collapse of a