ﻻ يوجد ملخص باللغة العربية
A systematics of grain boundary (GB) segregation transitions and critical phenomena has been derived to expand the classical GB segregation theory. This study uncovers when GB layering vs. prewetting transitions should occur and how they are related to one another. Moreover, a novel descriptor, normalized segregation strength, is introduced. It can represent several factors that control GB segregation, including strain and bond energies for both general and small-angle GBs, as well as misorientation for small-angle GBs, which had to be treated separately in prior models. In a strong segregation system with a large normalized segregation strength, first-order layering transitions occur at low temperatures and become continuous above GB roughing temperatures. With reducing normalized segregation strength, the layering transitions gradually merge and finally lump into prewetting transitions without quantized layer numbers, akin to Cahns critical-point wetting model. Furthermore, GB complexion diagrams with universal characters are constructed as the GB counterpart to the classical exemplar of Pelton-Thompson regular-solution binary bulk phase diagrams.
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to pred
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic com
Electric fields and currents, which are used in innovative materials processing and electrochemical energy conversion, can often alter microstructures in unexpected ways. However, little is known about the underlying mechanisms. Using ZnO-Bi2O3 as a
Computing the grain boundary (GB) counterparts to bulk phase diagrams represents an emerging research direction with potentially broad impacts. Using a classical embrittlement model system Ga-doped Al, this study demonstrates the feasibility of compu
Hydrotropes are substances consisting of amphiphilic molecules that are too small to self assemble in equilibrium structures in aqueous solutions, but can form dynamic molecular clusters H bonded with water molecules. Some hydrotropes, such as low mo