ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of quasi-static collapse process of a binary granular column

82   0   0.0 ( 0 )
 نشر من قبل Qingfan Shi Prof.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamical behavior of the column that made up binary granular beads is investigated systematically by tracking the displacement of particles in the collapse process. An experimental setup is first devised to control the quasi-static collapse of a granular column, and then observe the trajectories of tracer particles by using an industrial camera controlled by the image acquisition program. It is found that there exist two zones in column: a sliding region in which particles are moving in a layered structure; a static region within which particles are stationary. According to this analytical result, a dynamical model is developed to predict the trajectory evolution of particles in the space-time. The calculating result for the trajectories of particles on the selected layers is well consistent with the experimental observation.



قيم البحث

اقرأ أيضاً

139 - Leah K. Roth , Endao Han , 2019
The drag force exerted on an object intruding into granular media can depend on the objects velocity as well as the depth penetrated. We report on intrusion experiments at constant speed over four orders in magnitude together with systematic molecula r dynamics simulations well beyond the quasi-static regime. We find that velocity dependence crosses over to depth dependence at a characteristic time after initial impact. This crossover time scale, which depends on penetration speed, depth, gravity and intruder geometry, challenges current models that assume additive contributions to the drag.
The response to a localized force provides a sensitive test for different models of stress transmission in granular solids. The elasto-plastic models traditionally used by engineers have been challenged by theoretical and experimental results which s uggest a wave-like (hyperbolic) propagation of the stress, as opposed to the elliptic equations of static elasticity. Numerical simulations of two-dimensional granular systems subject to a localized external force are employed to examine the nature of stress transmission in these systems as a function of the magnitude of the applied force, the frictional parameters and the disorder (polydispersity). The results indicate that in large systems (typically considered by engineers), the response is close to that predicted by isotropic elasticity whereas the response of small systems (or when sufficiently large forces are applied) is strongly anisotropic. In the latter case the applied force induces changes in the contact network accompanied by frictional sliding. The larger the coefficient of static friction, the more extended is the range of forces for which the response is elastic and the smaller the anisotropy. Increasing the degree of polydispersity (for the range studied, up to 25%) decreases the range of elastic response. This article is an extension of a previously published letter [1].
185 - Vicente Garzo , Ricardo Brito , 2020
The Navier--Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture of inelastic hard spheres are determined from the Boltzmann kinetic equation. A normal or hydrodynamic solution to the Boltzmann equatio n is obtained via the Chapman--Enskog method for states near the local version of the homogeneous time-dependent state. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. As expected, they are given in terms of the solutions of a set of coupled linear integral equations. In addition, in contrast to previous results obtained for low-density granular mixtures, there are also nonzero contributions to the first-order approximations to the partial temperatures $T_i^{(1)}$ and the cooling rate $zeta^{(1)}$. Explicit forms for the diffusion transport coefficients, the shear viscosity coefficient, and the quantities $T_i^{(1)}$ and $zeta^{(1)}$ are obtained by assuming the steady-state conditions and by considering the leading terms in a Sonine polynomial expansion. The above transport coefficients are given in terms of the coefficients of restitution, concentration, and the masses and diameters of the components of the mixture. The results apply in principle for arbitrary degree of inelasticity and are not limited to specific values of concentration, mass and/or size ratios. As a simple application of these results, the violation of the Onsager reciprocal relations for a confined granular mixture is quantified in terms of the parameter space of the problem.
We experimentally measure the static stress at the bottom of a granular chains column with a precise and reproducible method. The relation, between the filling mass and the apparent mass converted from the bottom stress, is investigated on various ch ain lengths. Our measurements reconfirm that the scaling behavior of the stress saturation curves is in accord with the theoretical expectation of the Janssen model. Additionally, the saturation mass is displayed as a nonmonotonic function of the chain length, where a distinguishing transition of the saturation mass is found at the persistence length of the granular chain. We repeat the measurement with another measuring methodology and a silo with different size, respectively, the position of the peak maintains robust. In order to understand the transition of the saturation mass, the friction coefficient and the volume fraction of granular chains are also measured, from which Janssen parameter can be calculated. Finally, we preliminarily measure the bottom stress for two distinct packing structures of long chains, find the effect of the entanglements on the bottom stress, and argue that the entanglements might be responsible for the transition of the saturation mass.
We investigate, at a laboratory scale, the collapse of cylindrical shells of radius $R$ and thickness $t$ induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size, $d$, increases. The importance of grain size contribution is controlled by the ratio $d/sqrt{R t}$. We rationalize these antagonist effects with a novel fluid/structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا