ﻻ يوجد ملخص باللغة العربية
We have studied the temperature evolution of the inverse photoemission spectra of phase separated La$_{0.2}$Sr$_{0.8}$MnO$_{3}$. To identify the features in the room temperature experimental spectra, band structure calculations using Korringa-Kohn-Rostoker Greens function method were carried out. We find that the features generated by local moment disorder calculations give a better match with the experimental spectrum. In the insulating phase, we observed unusually an increased intensity at around the Fermi level. This puzzling behaviour is attributed to the shift in the chemical potential towards the conduction band. The present results clearly show the importance of unoccupied electronic states in better understanding of the phase separated systems.
The structure, morphology, and electrical properties of epitaxial a-axis oriented thin films of Nd(0.2)Sr(0.8)MnO(3) are reported for thicknesses 10 nm <= t <= 150 nm. Films were grown with both tensile and compressive strain on various substrates. I
The many surface reconstructions of (110)-oriented lanthanum--strontium manganite (La$_{0.8}$Sr$_{0.2}$MnO$_3$, LSMO) were followed as a function of the oxygen chemical potential ($mu_text{O}$) and the surface cation composition. Decreasing $mu_text{
The ferromagnetic and insulating state observed in La$_{1-x}$Ca$_{x}$MnO$_3$, 0.125$<$x$<$0.2, is characterized by structural and magnetic anomalies below T$_C$, similar to those observed in the x$_{Sr}$$approx$1/8. A neutron scattering study of the
We have studied a non volatile memory effect in the mixed valent compound La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ induced by magnetic field (H). In a previous work [R.S. Freitas et al., Phys. Rev. B 65 (2002) 104403], it has been shown that the response of thi
Polycrystalline La$_{2/3}$Sr$_{1/3}$MnO$_{3}$ (LSMO) thin films were synthesized by pulsed laser ablation on single crystal (100) yttria-stabilized zirconia (YSZ) substrates to investigate the mechanism of magneto-transport in a granular manganite. D