ﻻ يوجد ملخص باللغة العربية
Polycrystalline La$_{2/3}$Sr$_{1/3}$MnO$_{3}$ (LSMO) thin films were synthesized by pulsed laser ablation on single crystal (100) yttria-stabilized zirconia (YSZ) substrates to investigate the mechanism of magneto-transport in a granular manganite. Different degrees of granularity is achieved by using the deposition temperature (T$_{D}$) of 700 and 800 $^{0}$C. Although no significant change in magnetic order temperature (T$_C$) and saturation magnetization is seen for these two types of films, the temperature and magnetic field dependence of their resistivity ($rho$(T, H)) is strikingly dissimilar. While the $rho$(T,H) of the 800 $^{0}$C film is comparable to that of epitaxial samples, the lower growth temperature leads to a material which undergoes insulator-to-metal transition at a temperature (T$_{P}$ $approx$ 170 K) much lower than T$_C$. At T $ll$ T$_P$, the resistivity is characterized by a minimum followed by ln $emph{T}$ divergence at still lower temperatures. The high negative magnetoresistance ($approx$ 20$%$) and ln $emph{T}$ dependence below the minimum are explained on the basis of Kondo-type scattering from blocked Mn-spins in the intergranular material. Further, a striking feature of the T$_D$ = 700 $^{0}$C film is its two orders of magnitude larger anisotropic magnetoresistance (AMR) as compared to the AMR of epitaxial films. We attribute it to unquenching of the orbital angular momentum of 3d electrons of Mn ions in the intergranular region where crystal field is poorly defined.
Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) sub
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$
The relationship between the magnetic interaction and photoinduced dynamics in antiferromagnetic perovskites is investigated in this study. In La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$ thin films, commensurate spin ordering is accompanied by charge disprop
We have measured the contribution of magnetic domain walls (DWs) to the electric resistance in epitaxial manganite films patterned by electron-beam lithography into a track containing a set of notches. We find a DW resistance-area (RA) product of ~2.
Perpendicular magnetic anisotropy (PMA) plays a critical role in the development of spintronics, thereby demanding new strategies to control PMA. Here we demonstrate a conceptually new type of interface induced PMA that is controlled by oxygen octahe