ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic In-Plane Strain and Transport in Epitaxial Nd(0.2)Sr(0.8)MnO(3) Thin Films

113   0   0.0 ( 0 )
 نشر من قبل Joshua L. Cohn
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure, morphology, and electrical properties of epitaxial a-axis oriented thin films of Nd(0.2)Sr(0.8)MnO(3) are reported for thicknesses 10 nm <= t <= 150 nm. Films were grown with both tensile and compressive strain on various substrates. It is found that the elongated crystallographic c-axes of the films remain fully strained to the substrates for all thicknesses in both strain states. Relaxation of the a and b axes is observed for t>= 65 nm with films grown under tensile strain developing uniaxial crack arrays (running along the c axis) due to a highly anisotropic thermal expansion. For the latter films, the room-temperature in-plane electrical resistivity anisotropy, rho_b/rho_c, increases approximately exponentially with increasing film thickness to values of ~1000 in the thickest films studied. Films under tension have their Neel temperatures enhanced by ~25 K independent of thickness, consistent with an enhancement of ferromagnetic exchange along their expanded c axes.

قيم البحث

اقرأ أيضاً

94 - Ying Xiang , Qing Li , Yueying Li 2020
The newly found superconductivity in infinite-layer nickelate superconducting films has attracted much attention, because their crystalline and electronic structures are similar to high-$T_c$ cuprate superconductors. The upper critical field can prov ide much information on superconductivity, but detailed experimental data are still lacking in these films. Here we present temperature and angle dependence of resistivity measured under different magnetic fields ($H$) in Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ thin films. The onset superconducting transition occurs at about 16.2 K at 0 T. Temperature dependent upper critical fields determined by using a criterion very close to the onset transition show a clear negative curvature near the critical transition temperature, which is explained as the consequence of the paramagnetically limited effect on superconductivity. The temperature dependent anisotropy of the upper critical field is obtained from resistivity data, which yields a value decreasing from 3 to 1.2 with lowering temperature. This can be explained by a variable contribution from the orbital limit effect on upper critical field. The angle dependent resistivity at a fixed temperature and different magnetic fields cannot be scaled to one curve, which deviates from the prediction of the anisotropic Ginzburg-Landau theory. However, at low temperatures, the increased resistivity by magnetic field can be scaled by the parameter $H^beta |costheta|$ ($1<beta<6$) with $theta$ the angle enclosed between $c$-axis and the applied magnetic field. As the first detailed study on the upper critical field of the nickelate thin films, our results clearly indicate a small anisotropy and paramagnetically limited effect of superconductivity in nickelate superconductors.
The recently reported superconductivity 9-15 K in Nd0.8Sr0.2NiO2/SrTiO3 heterostructures that were fabricated by a soft-chemical topotactic reduction approach based on precursor Nd0.8Sr0.2NiO3 thin films deposited on SrTiO3 substrates, has excited an immediate surge of research interest. To explore an alternative physical path instead of chemical reduction for realizing superconductivity in this compound, using pulsed laser deposition, we systematically fabricated 63 Nd0.8Sr0.2NiOx (NSNO) thin films at a wide range of oxygen partial pressures on various different oxide substrates. Transport measurements did not find any signature of superconductivity in all the 63 thin-film samples. With reducing the oxygen content in the NSNO films by lowering the deposition oxygen pressure, the NSNO films are getting more resistive and finally become insulating. Furthermore, we tried to cap a 20-nm-thick amorphous LaAlO3 layer on a Nd0.8Sr0.2NiO3 thin film deposited at a high oxygen pressure of 150 mTorr to create oxygen vacancies on its surface and did not succeed in higher conductivity either. Our experimental results together with the recent report on the absence of superconductivity in synthesized bulk Nd0.8Sr0.2NiO2 crystals suggest that the chemical reduction approach could be unique for yielding superconductivity in NSNO/SrTiO3 heterostructures. However, SrTiO3 substrates could be reduced to generate oxygen vacancies during the chemical reduction process as well, which may thus partially contribute to conductivity.
72 - J. Klein 2002
Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) sub strates, we measured the magnetotransport properties both parallel and perpendicular to the substrate and found an anomaly of the electrical transport properties. Whereas metallic behavior is found within the plane of biaxial strain, for transport perpendicular to this plane an insulating behavior and non-linear current-voltage characteristics (IVCs) are observed. The most natural explanation of this anisotropy is a strain induced transition from an orbitally disordered ferromagnetic state to an orbitally ordered state associated with antiferromagnetic stacking of ferromagnetic manganese oxide planes.
We have studied the temperature evolution of the inverse photoemission spectra of phase separated La$_{0.2}$Sr$_{0.8}$MnO$_{3}$. To identify the features in the room temperature experimental spectra, band structure calculations using Korringa-Kohn-Ro stoker Greens function method were carried out. We find that the features generated by local moment disorder calculations give a better match with the experimental spectrum. In the insulating phase, we observed unusually an increased intensity at around the Fermi level. This puzzling behaviour is attributed to the shift in the chemical potential towards the conduction band. The present results clearly show the importance of unoccupied electronic states in better understanding of the phase separated systems.
The recent observation of superconductivity in infinite-layer nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ has received considerable attention. Despite the many efforts to understand the superconductivity in infinite-layer nickelates, a consensus on the u nderlying mechanism for the superconductivity has yet to be reached, partly owing to the challenges with the material synthesis. Here, we report the successful growth of superconducting infinite-layer Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ films by pulsed-laser deposition and soft chemical reduction. The details on growth process will be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا