ترغب بنشر مسار تعليمي؟ اضغط هنا

A Game-Theoretic Approach to Energy-Efficient Resource Allocation in Device-to-Device Underlay Communications

226   0   0.0 ( 0 )
 نشر من قبل Zhenyu Zhou Dr
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the numerous benefits brought by Device-to-Device (D2D) communications, the introduction of D2D into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of User Equipments (UEs). Most of the previous studies mainly focus on how to maximize the Spectral Efficiency (SE) and ignore the energy consumption of UEs. In this paper, we study how to maximize each UEs Energy Efficiency (EE) in an interference-limited environment subject to its specific Quality of Service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. A distributed interference-aware energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. We prove that the optimum solution obtained by the proposed algorithm is the Nash equilibrium of the noncooperative game. We also analyze the tradeoff between EE and SE and derive closed-form expressions for EE and SE gaps.



قيم البحث

اقرأ أيضاً

In this paper, we introduce the problem of decision-oriented communications, that is, the goal of the source is to send the right amount of information in order for the intended destination to execute a task. More specifically, we restrict our attent ion to how the source should quantize information so that the destination can maximize a utility function which represents the task to be executed only knowing the quantized information. For example, for utility functions under the form $uleft(boldsymbol{x}; boldsymbol{g}right)$, $boldsymbol{x}$ might represent a decision in terms of using some radio resources and $boldsymbol{g}$ the system state which is only observed through its quantized version $Q(boldsymbol{g})$. Both in the case where the utility function is known and the case where it is only observed through its realizations, we provide solutions to determine such a quantizer. We show how this approach applies to energy-efficient power allocation. In particular, it is seen that quantizing the state very roughly is perfectly suited to sum-rate-type function maximization, whereas energy-efficiency metrics are more sensitive to imperfections.
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. Nevertheless, in the actual net work operation, the base station (BS) and IRS may belong to different operators, consequently, the IRS is reluctant to help the BS without any payment. Therefore, this paper investigates price-based reflection resource (elements) allocation strategies for an IRS-aided multiuser multiple-input and single-output (MISO) downlink communication systems, in which all transmissions over the same frequency band. Assuming that the IRS is composed with multiple modules, each of which is attached with a smart controller, thus, the states (active/idle) of module can be operated by its controller, and all controllers can be communicated with each other via fiber links. A Stackelberg game-based alternating direction method of multipliers (ADMM) is proposed to jointly optimize the transmit beamforming at the BS and the passive beamforming of the active modules. Numerical examples are presented to verify the proposed algorithm. It is shown that the proposed scheme is effective in the utilities of both the BS and IRS.
This paper considers a game-theoretic formulation of the covert communications problem with finite blocklength, where the transmitter (Alice) can randomly vary her transmit power in different blocks, while the warden (Willie) can randomly vary his de tection threshold in different blocks. In this two player game, the payoff for Alice is a combination of the coding rate to the receiver (Bob) and the detection error probability at Willie, while the payoff for Willie is the negative of his detection error probability. Nash equilibrium solutions to the game are obtained, and shown to be efficiently computable using linear programming. For less covert requirements, our game-theoretic approach can achieve significantly higher coding rates than uniformly distributed transmit powers. We then consider the situation with an additional jammer, where Alice and the jammer can both vary their powers. We pose a two player game where Alice and the jammer jointly comprise one player, with Willie the other player. The use of a jammer is shown in numerical simulations to lead to further significant performance improvements.
Device-to-device (D2D) communications is seen as a major technology to overcome the imminent wireless capacity crunch and to enable novel application services. In this paper, we propose a novel, social-aware approach for optimizing D2D communications by exploiting two network layers: the social network and the physical, wireless network. First we formulate the physical layer D2D network according to users encounter histories. Subsequently, we propose a novel approach, based on the so-called Indian Buffet Process, so as to model the distribution of contents in users online social networks. Given the online and offline social relations collected by the Evolved Node B, we jointly optimize the traffic offload process in D2D communication. Simulation results show that the proposed approach offload the traffic of Evolved Node B successfully.
Mobile users in future wireless networks face limited wireless resources such as data plan, computation capacity and energy storage. Given that some of these users may not be utilizing fully their wireless resources, device-to-device (D2D) resource s haring is a promising approach to exploit users diversity in resource use and for pooling their resources locally. In this paper, we propose a novel two-sided D2D trading market model that enables a large number of locally connected users to trade resources. Traditional resource allocation solutions are mostly centralized without considering users local D2D connectivity constraints, becoming unscalable for large-scale trading. In addition, there may be market failure since selfish users will not truthfully report their actual valuations and quantities for buying or selling resources. To address these two key challenges, we first investigate the distributed resource allocation problem with D2D assignment constraints. Based on the greedy idea of maximum weighted matching, we propose a fast algorithm to achieve near-optimal average allocative efficiency. Then, we combine it with a new pricing mechanism that adjusts the final trading prices for buying and selling resources in a way that buyers and sellers are incentivized to truthfully report their valuations and available resource quantities. Unlike traditional double auctions with a central controller, this pricing mechanism is fully distributed in the sense that the final trading prices between each matched pair of users only depend on their own declarations and hence can be calculated locally. Finally, we analyze the repeated execution of the proposed D2D trading mechanism in multiple rounds and determine the best trading frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا