ﻻ يوجد ملخص باللغة العربية
This paper considers a game-theoretic formulation of the covert communications problem with finite blocklength, where the transmitter (Alice) can randomly vary her transmit power in different blocks, while the warden (Willie) can randomly vary his detection threshold in different blocks. In this two player game, the payoff for Alice is a combination of the coding rate to the receiver (Bob) and the detection error probability at Willie, while the payoff for Willie is the negative of his detection error probability. Nash equilibrium solutions to the game are obtained, and shown to be efficiently computable using linear programming. For less covert requirements, our game-theoretic approach can achieve significantly higher coding rates than uniformly distributed transmit powers. We then consider the situation with an additional jammer, where Alice and the jammer can both vary their powers. We pose a two player game where Alice and the jammer jointly comprise one player, with Willie the other player. The use of a jammer is shown in numerical simulations to lead to further significant performance improvements.
The deployment of unmanned aerial vehicle (UAV) for surveillance and monitoring gives rise to the confidential information leakage challenge in both civilian and military environments. The security and covert communication problems for a pair of terr
A game-theoretic framework is used to study the effect of constellation size on the energy efficiency of wireless networks for M-QAM modulation. A non-cooperative game is proposed in which each user seeks to choose its transmit power (and possibly tr
A game-theoretic framework is used to study the effect of constellation size on the energy efficiency of wireless networks for M-QAM modulation. A non-cooperative game is proposed in which each user seeks to choose its transmit power (and possibly tr
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. Nevertheless, in the actual net
We consider a cellular network deployment where UAV-to-UAV (U2U) transmit-receive pairs share the same spectrum with the uplink (UL) of cellular ground users (GUEs). For this setup, we focus on analyzing and comparing the performance of two spectrum