ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce the problem of decision-oriented communications, that is, the goal of the source is to send the right amount of information in order for the intended destination to execute a task. More specifically, we restrict our attention to how the source should quantize information so that the destination can maximize a utility function which represents the task to be executed only knowing the quantized information. For example, for utility functions under the form $uleft(boldsymbol{x}; boldsymbol{g}right)$, $boldsymbol{x}$ might represent a decision in terms of using some radio resources and $boldsymbol{g}$ the system state which is only observed through its quantized version $Q(boldsymbol{g})$. Both in the case where the utility function is known and the case where it is only observed through its realizations, we provide solutions to determine such a quantizer. We show how this approach applies to energy-efficient power allocation. In particular, it is seen that quantizing the state very roughly is perfectly suited to sum-rate-type function maximization, whereas energy-efficiency metrics are more sensitive to imperfections.
Despite the numerous benefits brought by Device-to-Device (D2D) communications, the introduction of D2D into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and
Immersive media streaming, especially virtual reality (VR)/360-degree video streaming which is very bandwidth demanding, has become more and more popular due to the rapid growth of the multimedia and networking deployments. To better explore the usag
The research efforts on cellular vehicle-to-everything (V2X) communications are gaining momentum with each passing year. It is considered as a paradigm-altering approach to connect a large number of vehicles with minimal cost of deployment and mainte
With the development of wireless communication, higher requirements arise for train-ground wireless communications in high-speed railway (HSR) scenarios. The millimeter-wave (mm-wave) frequency band with rich spectrum resources can provide users in H
Data clustering is an instrumental tool in the area of energy resource management. One problem with conventional clustering is that it does not take the final use of the clustered data into account, which may lead to a very suboptimal use of energy o