ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Double Auctions for Large-Scale Device-to-Device Resource Trading

73   0   0.0 ( 0 )
 نشر من قبل Shuqin Gao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile users in future wireless networks face limited wireless resources such as data plan, computation capacity and energy storage. Given that some of these users may not be utilizing fully their wireless resources, device-to-device (D2D) resource sharing is a promising approach to exploit users diversity in resource use and for pooling their resources locally. In this paper, we propose a novel two-sided D2D trading market model that enables a large number of locally connected users to trade resources. Traditional resource allocation solutions are mostly centralized without considering users local D2D connectivity constraints, becoming unscalable for large-scale trading. In addition, there may be market failure since selfish users will not truthfully report their actual valuations and quantities for buying or selling resources. To address these two key challenges, we first investigate the distributed resource allocation problem with D2D assignment constraints. Based on the greedy idea of maximum weighted matching, we propose a fast algorithm to achieve near-optimal average allocative efficiency. Then, we combine it with a new pricing mechanism that adjusts the final trading prices for buying and selling resources in a way that buyers and sellers are incentivized to truthfully report their valuations and available resource quantities. Unlike traditional double auctions with a central controller, this pricing mechanism is fully distributed in the sense that the final trading prices between each matched pair of users only depend on their own declarations and hence can be calculated locally. Finally, we analyze the repeated execution of the proposed D2D trading mechanism in multiple rounds and determine the best trading frequency.



قيم البحث

اقرأ أيضاً

Despite the numerous benefits brought by Device-to-Device (D2D) communications, the introduction of D2D into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of User Equipments (UEs). Most of the previous studies mainly focus on how to maximize the Spectral Efficiency (SE) and ignore the energy consumption of UEs. In this paper, we study how to maximize each UEs Energy Efficiency (EE) in an interference-limited environment subject to its specific Quality of Service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. A distributed interference-aware energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. We prove that the optimum solution obtained by the proposed algorithm is the Nash equilibrium of the noncooperative game. We also analyze the tradeoff between EE and SE and derive closed-form expressions for EE and SE gaps.
With the emerging technologies of Internet of Things (IOTs), the capabilities of mobile devices have increased tremendously. However, in the big data era, to complete tasks on one device is still challenging. As an emerging technology, crowdsourcing utilizing crowds of devices to facilitate large scale sensing tasks has gaining more and more research attention. Most of existing works either assume devices are willing to cooperate utilizing centralized mechanisms or design incentive algorithms using double auctions. Which is not practical to deal with the case when there is a lack of centralized controller for the former, and not suitable to the case when the seller device is also resource constrained for the later. In this paper, we propose a truthful incentive mechanism with combinatorial double auction for crowd sensing task assignment in device-to-device (D2D) clouds, where a single mobile device with intensive sensing task can hire a group of idle neighboring devices. With this new mechanism, time critical sensing tasks can be handled in time with a distributed nature. We prove that the proposed mechanism is truthful, individual rational, budget balance and computational efficient. Our simulation results demonstrate that combinatorial double auction mechanism gets a 26.3% and 15.8% gains in comparison to existing double auction scheme and the centralized maximum matching based algorithm respectively.
76 - Zhengrui Huang 2021
Considering the energy-efficient emergency response, subject to a given set of constraints on emergency communication networks (ECN), this article proposes a hybrid device-to-device (D2D) and device-to-vehicle (D2V) network for collecting and transmi tting emergency information. First, we establish the D2D network from the perspective of complex networks by jointly determining the optimal network partition (ONP) and the temporary data caching centers (TDCC), and thus emergency data can be forwarded and cached in TDCCs. Second, based on the distribution of TDCCs, the D2V network is established by unmanned aerial vehicles (UAV)-based waypoint and motion planning, which saves the time for wireless transmission and aerial moving. Finally, the amount of time for emergency response and the total energy consumption are simultaneously minimized by a multiobjective evolutionary algorithm based on decomposition (MOEA/D), subject to a given set of minimum signal-to-interference-plus-noise ratio (SINR), number of UAVs, transmit power, and energy constraints. Simulation results show that the proposed method significantly improves response efficiency and reasonably controls the energy, thus overcoming limitations of existing ECNs. Therefore, this network effectively solves the key problem in the rescue system and makes great contributions to post-disaster decision-making.
This paper studies device to device (D2D) coded-caching with information theoretic security guarantees. A broadcast network consisting of a server, which has a library of files, and end users equipped with cache memories, is considered. Information t heoretic security guarantees for confidentiality are imposed upon the files. The server populates the end user caches, after which D2D communications enable the delivery of the requested files. Accordingly, we require that a user must not have access to files it did not request, i.e., secure caching. First, a centralized coded caching scheme is provided by jointly optimizing the cache placement and delivery policies. Next, a decentralized coded caching scheme is developed that does not require the knowledge of the number of active users during the caching phase. Both schemes utilize non-perfect secret sharing and one-time pad keying, to guarantee secure caching. Furthermore, the proposed schemes provide secure delivery as a side benefit, i.e., any external entity which overhears the transmitted signals during the delivery phase cannot obtain any information about the database files. The proposed schemes provide the achievable upper bound on the minimum delivery sum rate. Lower bounds on the required transmission sum rate are also derived using cut-set arguments indicating the multiplicative gap between the lower and upper bounds. Numerical results indicate that the gap vanishes with increasing memory size. Overall, the work demonstrates the effectiveness of D2D communications in cache-aided systems even when confidentiality constraints are imposed at the participating nodes and against external eavesdroppers.
We present results from Alexa speech teams on semi-supervised learning (SSL) of acoustic models (AM) with experiments spanning over 3000 hours of GPU time, making our study one of the largest of its kind. We discuss SSL for AMs in a small footprint s etting, showing that a smaller capacity model trained with 1 million hours of unsupervised data can outperform a baseline supervised system by 14.3% word error rate reduction (WERR). When increasing the supervised data to seven-fold, our gains diminish to 7.1% WERR; to improve SSL efficiency at larger supervised data regimes, we employ a step-wise distillation into a smaller model, obtaining a WERR of 14.4%. We then switch to SSL using larger student models in low data regimes; while learning efficiency with unsupervised data is higher, student models may outperform teacher models in such a setting. We develop a theoretical sketch to explain this behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا