ﻻ يوجد ملخص باللغة العربية
We consider the following evolutionary Hamilton-Jacobi equation with initial condition: begin{equation*} begin{cases} partial_tu(x,t)+H(x,u(x,t),partial_xu(x,t))=0, u(x,0)=phi(x), end{cases} end{equation*} where $phi(x)in C(M,mathbb{R})$. Under some assumptions on the convexity of $H(x,u,p)$ with respect to $p$ and the Osgood growth of $H(x,u,p)$ with respect to $u$, we establish an implicitly variational principle and provide an intrinsic relation between viscosity solutions and certain minimal characteristics. Moreover, we obtain a representation formula of the viscosity solution of the evolutionary Hamilton-Jacobi equation.
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomeg
We study the Hamilton-Jacobi equations $H(x,Du,u)=0$ in $M$ and $partial u/partial t +H(x,D_xu,u)=0$ in $Mtimes(0,infty)$, where the Hamiltonian $H=H(x,p,u)$ depends Lipschitz continuously on the variable $u$. In the framework of the semicontinuous v
For a convex, coercive continuous Hamiltonian on a compact closed Riemannian manifold $M$, we construct a unique forward weak KAM solution of [ H(x, d_x u)=c(H) ] by a vanishing discount approach, where $c(H)$ is the Ma~ne critical value. We also dis
If $U:[0,+infty[times M$ is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$partial_tU+ H(x,partial_xU)=0,$$ where $M$ is a not necessarily compact manifold, and $H$ is a Tonelli Hamiltonian, we prove the set $Si
We study the singular locus of solutions to Hamilton-Jacobi equations with a Hamiltonian independent of $u$. In a previous paper, we proved that the singular locus is what we call a balanced split locus. In this paper, we find and classify all balanc