ﻻ يوجد ملخص باللغة العربية
We study the singular locus of solutions to Hamilton-Jacobi equations with a Hamiltonian independent of $u$. In a previous paper, we proved that the singular locus is what we call a balanced split locus. In this paper, we find and classify all balanced split sets, identifying the cases where the only balanced split locus is the singular locus, and the cases where this doesnt hold. This clarifies the relationship between viscosity solutions and the more classical approach of characteristics and shocks.
If $U:[0,+infty[times M$ is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$partial_tU+ H(x,partial_xU)=0,$$ where $M$ is a not necessarily compact manifold, and $H$ is a Tonelli Hamiltonian, we prove the set $Si
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
We study state-constraint static Hamilton-Jacobi equations in a sequence of domains ${Omega_k}_{k in mathbb{N}}$ in $mathbb{R}^n$ such that $Omega_k subset Omega_{k+1}$ for all $kin mathbb{N}$. We obtain rates of convergence of $u_k$, the solution to
We consider the specified stochastic homogenization of first order evolutive Hamilton-Jacobi equations on a very simple junction, i.e the real line with a junction at the origin. Far from the origin, we assume that the considered hamiltonian is close
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomeg