ﻻ يوجد ملخص باللغة العربية
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomega)=H(x,p;omega)$. We consider for an initial condition $fin C^0 ( {mathbb R}^n)$, the family of variational solutions of the stochastic Hamilton-Jacobi equations $$left{ begin{aligned} frac{partial u^{ varepsilon }}{partial t}(t,x;omega)+Hleft (frac{x}{ varepsilon } , frac{partial u^varepsilon }{partial x}(t,x;omega);omega right )=0 & u^varepsilon (0,x;omega)=f(x)& end{aligned} right .$$ Under some coercivity assumptions on $p$ -- but without any convexity assumption -- we prove that for a.e. $omega in Omega$ we have $C^0-lim u^{varepsilon}(t,x;omega)=v(t,x)$ where $v$ is the variational solution of the homogenized equation $$left{ begin{aligned} frac{partial v}{partial t}(x)+{overline H}left (frac{partial v }{partial x}(x) right )=0 & v (0,x)=f(x)& end{aligned} right.$$
We consider the specified stochastic homogenization of first order evolutive Hamilton-Jacobi equations on a very simple junction, i.e the real line with a junction at the origin. Far from the origin, we assume that the considered hamiltonian is close
We study the stochastic homogenization for a Cauchy problem for a first-order Hamilton-Jacobi equation whose operator is not coercive w.r.t. the gradient variable. We look at Hamiltonians like $H(x,sigma(x)p,omega)$ where $sigma(x)$ is a matrix assoc
We consider the following evolutionary Hamilton-Jacobi equation with initial condition: begin{equation*} begin{cases} partial_tu(x,t)+H(x,u(x,t),partial_xu(x,t))=0, u(x,0)=phi(x), end{cases} end{equation*} where $phi(x)in C(M,mathbb{R})$. Under some
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
Let $u^varepsilon$ and $u$ be viscosity solutions of the oscillatory Hamilton-Jacobi equation and its corresponding effective equation. Given bounded, Lipschitz initial data, we present a simple proof to obtain the optimal rate of convergence $mathca