ترغب بنشر مسار تعليمي؟ اضغط هنا

Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry

192   0   0.0 ( 0 )
 نشر من قبل Piermarco Cannarsa
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

If $U:[0,+infty[times M$ is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$partial_tU+ H(x,partial_xU)=0,$$ where $M$ is a not necessarily compact manifold, and $H$ is a Tonelli Hamiltonian, we prove the set $Sigma(U)$, of points where $U$ is not differentiable, is locally contractible. Moreover, we study the homotopy type of $Sigma(U)$. We also give an application to the singularities of a distance function to a closed subset of a complete Riemannian manifold.



قيم البحث

اقرأ أيضاً

206 - Said Benachour 2007
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
We study the singular locus of solutions to Hamilton-Jacobi equations with a Hamiltonian independent of $u$. In a previous paper, we proved that the singular locus is what we call a balanced split locus. In this paper, we find and classify all balanc ed split sets, identifying the cases where the only balanced split locus is the singular locus, and the cases where this doesnt hold. This clarifies the relationship between viscosity solutions and the more classical approach of characteristics and shocks.
82 - Claude Viterbo 2021
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomeg a)=H(x,p;omega)$. We consider for an initial condition $fin C^0 ( {mathbb R}^n)$, the family of variational solutions of the stochastic Hamilton-Jacobi equations $$left{ begin{aligned} frac{partial u^{ varepsilon }}{partial t}(t,x;omega)+Hleft (frac{x}{ varepsilon } , frac{partial u^varepsilon }{partial x}(t,x;omega);omega right )=0 & u^varepsilon (0,x;omega)=f(x)& end{aligned} right .$$ Under some coercivity assumptions on $p$ -- but without any convexity assumption -- we prove that for a.e. $omega in Omega$ we have $C^0-lim u^{varepsilon}(t,x;omega)=v(t,x)$ where $v$ is the variational solution of the homogenized equation $$left{ begin{aligned} frac{partial v}{partial t}(x)+{overline H}left (frac{partial v }{partial x}(x) right )=0 & v (0,x)=f(x)& end{aligned} right.$$
165 - Cui Chen , Jiahui Hong , Kai Zhao 2021
The main purpose of this paper is to study the global propagation of singularities of viscosity solution to discounted Hamilton-Jacobi equation begin{equation}label{eq:discount 1}tag{HJ$_lambda$} lambda v(x)+H( x, Dv(x) )=0 , quad xin mathbb{R}^n. end{equation} We reduce the problem for equation eqref{eq:discount 1} into that for a time-dependent evolutionary Hamilton-Jacobi equation. We proved that the singularities of the viscosity solution of eqref{eq:discount 1} propagate along locally Lipschitz singular characteristics which can extend to $+infty$. We also obtained the homotopy equivalence between the singular set and the complement of associated the Aubry set with respect to the viscosity solution of equation eqref{eq:discount 1}.
We consider the specified stochastic homogenization of first order evolutive Hamilton-Jacobi equations on a very simple junction, i.e the real line with a junction at the origin. Far from the origin, we assume that the considered hamiltonian is close d to given stationary ergodic hamiltonians (which are different on the left and on the right). Near the origin, there is a perturbation zone which allows to pass from one hamiltonian to the other. The main result of this paper is a stochastic homogenization as the length of the transition zone goes to zero. More precisely, at the limit we get two deterministic right and left hamiltonians with a deterministic junction condition at the origin. The main difficulty and novelty of the paper come from the fact that the hamiltonian is not stationary ergodic. Up to our knowledge, this is the first specified stochastic homogenization result. This work is motivated by traffic flow applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا