ﻻ يوجد ملخص باللغة العربية
We attempt to simulate the heterogeneous nucleation of ice at model silver-iodide surfaces and find relatively facile ice nucleation and growth at the Ag+ termi nated basal face, but never see nucleation at the I- terminated basal face or the prism and normal faces. Water molecules strongly adsorb onto the Ag+ terminate d face to give a well-ordered hexagonal ice-like bilayer that then acts as a template for further ice growth.
Heterogeneous ice nucleation is one of the most common and important process in the physical environment. AgI has been proved to be an effective ice nucleating agent in the process of ice nucleation. However, the microscopic mechanism of AgI in heter
Silicene, the two-dimensional allotrope of silicon, is predicted to exist in a low-buckled honeycomb lattice, characterized by semimetallic electronic bands with graphenelike energy-momentum dispersions around the Fermi level (represented by touching
Chiral graphene nanoribbons are extremely interesting structures due to their low bandgaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces and assess the effect of charge transfer on their properties.
Ice nucleation is a process of great relevance in physics, chemistry, technology and environmental sciences, much theoretical and experimental efforts have been devoted to its understanding, but still it remains a topic of intense research. We shed l
The possibility of having positronium (Ps) physisorbed at a material surface is of great fundamental interest, since it can lead to new insight regarding quantum sticking and is a necessary first step to try to obtain a Ps$_2$ molecule on a material