ترغب بنشر مسار تعليمي؟ اضغط هنا

Band structure and energy level alignment of chiral graphene nanoribbons on silver surfaces

106   0   0.0 ( 0 )
 نشر من قبل Dimas G. de Oteyza
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chiral graphene nanoribbons are extremely interesting structures due to their low bandgaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces and assess the effect of charge transfer on their properties.

قيم البحث

اقرأ أيضاً

We report on the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4-dibromo-para-terphenyl as molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbons band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in graphene nanoribbon-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbates band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.
Topology concepts have significantly deepened of our understanding in recent years of the electronic properties of one-dimensional (1D) nano structures such as the graphene nanoribbons. Controlling topological electronic properties of GNRs has been d emonstrated in both theoretical studies and experimental realization. Most previous works rely on classification theory requiring both time reversal and spatial symmetry of a unit cell in the 1D bulk material that is commensurate to its boundary. To access boundary structures that lead to unit cell with no spatial symmetry and to generalize the theory, we propose here another classification scheme, using chiral symmetry, to arrive at a Z classification that is not only applicable to GNRs with arbitrary terminations, but also to any general 1D chiral structures. This theory, combining with Liebs theorem, moreover enables access to the electrons spin degree of freedom, allowing for investigation of spin physics.
Hexagonal boron nitride (hBN) is the supporting substrate of choice for two-dimensional material devices because it is atomically flat and chemically inert. However, due to the small size of mechanically exfoliated hBN flakes, electronic structure st udies of 2D materials supported by hBN using angle-resolved photoemission spectroscopy (ARPES) are challenging. Here we investigate the electronic band structure of a Bernal-stacked bilayer graphene sheet on a hexagonal boron nitride (BLG/hBN) flake using nanospot ARPES (nanoARPES). By fitting high-resolution energy vs. momentum electronic band spectra, we extract the tight-binding parameters for BLG on hBN. In addition, we reveal spatial variations of the alignment angle between BLG and hBN lattices via inhomogeneity of the electronic bands near the Fermi level. We confirmed these findings by scanning tunneling microscopy measurements obtained on the same device. Our results from spatially resolved nanoARPES measurements of BLG/hBN heterostructures are instrumental for understanding experiments that utilize spatially averaging techniques such as electronic transport and optical spectroscopy.
It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and r esultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Youngs Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.
We report the infrared transmission measurement on electrically gated twisted bilayer graphene. The optical absorption spectrum clearly manifests the dramatic changes such as the splitting of inter-linear-band absorption step, the shift of inter-van Hove singularity transition peak, and the emergence of very strong intra-valence (intra-conduction) band transition. These anomalous optical behaviors demonstrate consistently the non-rigid band structure modification created by the ion-gel gating through the layer-dependent Coulomb screening. We propose that this screening-driven band modification is an universal phenomenon that persists to other bilayer crystals in general, establishing the electrical gating as a versatile technique to engineer the band structures and to create new types of optical absorptions that can be exploited in electro-optical device application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا