ترغب بنشر مسار تعليمي؟ اضغط هنا

Homogeneous nucleation of ice

264   0   0.0 ( 0 )
 نشر من قبل Haiyang Niu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ice nucleation is a process of great relevance in physics, chemistry, technology and environmental sciences, much theoretical and experimental efforts have been devoted to its understanding, but still it remains a topic of intense research. We shed light on this phenomenon by performing atomistic based simulations. Using metadynamics and a carefully designed set of collective variables, reversible transitions between water and ice are able to be simulated. We find that water freezes into a stacking disordered structure with the all-atom TIP4P/Ice model, and the features of the critical nucleus of nucleation at the microscopic level are revealed. Our results are in agreement with recent experimental and other theoretical works and confirm that nucleation is preceded by a large increase in tetrahedrally coordinated water molecules.

قيم البحث

اقرأ أيضاً

296 - Santi Prestipino 2018
Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized bias ed-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.
Estimating the homogeneous ice nucleation rate from undercooled liquid water is at the same time crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theor etical point of view, difficulties arise due to the long time scales required, as well as the numerous nucleation pathways involved to form ice nuclei with different stacking disorders. We computed the homogeneous ice nucleation rate at a physically relevant undercooling for a single-site water model, taking into account the diffuse nature of ice-water interfaces, stacking disorders in ice nuclei, and the addition rate of particles to the critical nucleus.We disentangled and investigated the relative importance of all the terms, including interfacial free energy, entropic contributions and the kinetic prefactor, that contribute to the overall nucleation rate.There has been a long-standing discrepancy for the predicted homogeneous ice nucleation rates, and our estimate is faster by 9 orders of magnitude compared with previous literature values. Breaking down the problem into segments and considering each term carefully can help us understand where the discrepancy may come from and how to systematically improve the existing computational methods.
The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phase s having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments.
The discrepancy in nucleation rate densities between simulated and experimental hard spheres remains staggering and unexplained. Suggestively, more strongly sedimenting colloidal suspensions of hard spheres nucleate much faster than weakly sedimentin g systems. In this work we consider firstly the effect of sedimentation on the structure of colloidal hard spheres, by tuning the density mismatch between solvent and colloidal particles. In particular we investigate the effect on the degree of five fold symmetry present. Secondly we study the size of density fluctuations in these experimental systems in comparison to simulations. The density fluctuations are measured by assigning each particle a local density, which is related to the number of particles within a distance of 3.25 particle diameters. The standard deviation of these local densities gives an indication of the fluctuations present in the system. Five fold symmetry is suppressed by a factor of two when sedimentation is induced in our system. Density fluctuations are also increased by a factor of two in experiments compared to simulations. The change in five fold symmetry makes a difference to the expected nucleation rates, but we demonstrate that it is ultimately too small to resolve the discrepancy between experiment and simulation, while the fluctuations are shown to be an artefact of 3d particle tracking.
We study the rheology of suspensions of ice crystals at moderate to high volume fractions in a sucrose solution in which they are partially soluble; a model system for a wide class of crystal mushes or slurries. Under step changes in shear rate, the viscosity changes to a new `relaxed value over several minutes, in a manner well fitted by a single exponential. The behavior of the relaxed viscosity is power-law shear thinning with shear rate, with an exponent of $-1.76 pm 0.25$, so that shear stress falls with increasing shear rate. On longer timescales, the crystals ripen (leading to a falling viscosity) so that the mean radius increases with time to the power $0.14 pm 0.07$. We speculate that this unusually small exponent is due to the interaction of classical ripening dynamics with abrasion or breakup under flow. We compare the rheological behavior to mechanistic models based on flow-induced aggregation and breakup of crystal clusters, finding that the exponents can be predicted from liquid phase sintering and breakup by brittle fracture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا