ترغب بنشر مسار تعليمي؟ اضغط هنا

Multichannel Quantum Defect Theory of Strontium Rydberg Series

190   0   0.0 ( 0 )
 نشر من قبل Christophe Vaillant
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory models for the singlet and triplet S, P, D and F states of strontium based on improved energy level measurements. The new models reveal additional insights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series perturbers. Comparison between the predictions of the new models and those of previous empirical and emph{ab initio} studies reveals good agreement with most series, however some discrepancies are highlighted. Using the multichannel quantum defect theory wave functions derived from our models we calculate other observables such as Lande $g_J$-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium.



قيم البحث

اقرأ أيضاً

New measurements of high-lying even parity $6sns, {}^1 ! S_0$ and $6snd,{}^{3,1}!D_2$ levels of neutral $^{174}$Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state $4f^{14}6s^2 , {}^1 ! S_0$, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar {it{et al}} cite{Aymar_1980} and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit $I_{6s}=50443.07041(25)$ cm$^{-1}$ is proposed.
Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approximation. Quantum defects, obtained by fitting existing laser sp ectroscopic data, are provided for all $S$, $P$, $D$ and $F$ series of strontium and for the $^3P_2$ series of calcium. The results show qualitative differences with the alkali metal atoms, including isotropically attractive interactions of the strontium $^1S_0$ states and a greater rarity of Forster resonances. Only two such resonances are identified, both in triplet series of strontium. The angular dependence of the long range interaction is briefly discussed.
We consider losses in collisions of ultracold molecules described by a simple statistical short-range model that explicitly accounts for the limited lifetime of classically chaotic collision complexes. This confirms that thermally sampling many isola ted resonances leads to a loss cross section equal to the elastic cross section derived by Mayle et al. [Phys. Rev. A 85, 062712 (2012)], and this makes precise the conditions under which this is the case. Surprisingly, we find that the loss is nonuniversal. We also consider the case that loss broadens the short-range resonances to the point that they become overlapping. The overlapping resonances can be treated statistically even if the resonances are sparse compared to $k_BT$, which may be the case for many molecules. The overlap results in Ericson fluctuations which yield a nonuniversal short-range boundary condition that is independent of energy over a range much wider than is sampled thermally. Deviations of experimental loss rates from the present theory beyond statistical fluctuations and the dependence on a background phase shift are interpreted as non-chaotic dynamics of short-range collision complexes.
We present quantum mechanical calculations of Auger decay rates for two Rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis o f the two-electron state space. We consider large sets of two-atom states with randomly chosen quantum numbers and find that the charge overlap between the two Rydberg electrons allows one to characterise the magnitude of the Auger decay rates. If the electron clouds overlap by more than one percent, the Auger decay rates increase approximately exponentially with the charge overlap. This finding is independent of the energy of the initial state.
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, thes e approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunneling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا