ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and Multichannel Quantum Defect Theory analysis

232   0   0.0 ( 0 )
 نشر من قبل Patrick Cheinet
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New measurements of high-lying even parity $6sns, {}^1 ! S_0$ and $6snd,{}^{3,1}!D_2$ levels of neutral $^{174}$Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state $4f^{14}6s^2 , {}^1 ! S_0$, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar {it{et al}} cite{Aymar_1980} and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit $I_{6s}=50443.07041(25)$ cm$^{-1}$ is proposed.

قيم البحث

اقرأ أيضاً

Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory models for the singlet and triplet S, P, D and F states of strontium based on improved energy level measurements. The new models reveal additional i nsights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series perturbers. Comparison between the predictions of the new models and those of previous empirical and emph{ab initio} studies reveals good agreement with most series, however some discrepancies are highlighted. Using the multichannel quantum defect theory wave functions derived from our models we calculate other observables such as Lande $g_J$-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium.
247 - R. Li , J. Lassen , Z. P. Zhong 2017
Multi-step laser resonance ionization spectroscopy of lutetium (Lu) has been performed at TRIUMFs off-line laser ion source test stand. The even-parity Rydberg series $6s^2nd$ $^2D_{3/2}$, $6s^2nd$ $^2D_{5/2}$ and $6s^2ns$ $^2S_{1/2}$ were observed c onverging to the 6s$^2$ ionization potential. The experimental results has been compared to previous work. 51 levels of Rydberg series $6s^2nd$ $^2D_{5/2}$ and 52 levels of Rydberg series $6s^2ns$ $^2S_{1/2}$ were reported new. Additionally six even-parity autoionization (AI) series converging to Lu ionic states $5d6s$ $^3D_1$ and $5d6s$ $^3D_2$ were observed. The level energies of these AI states were measured. The configurations of the AI states were assigned by relativistic multichannel theory (RMCT) within the framework of multichannel quantum defect theory (MQDT).
We study isolated core excitation of ultra cold ytterbium Rydberg atoms of high orbital quantum number. Measurements were performed on the $6s_{1/2} 40l rightarrow 6p_{1/2} 40l $ transition with $l=5-9$. The extracted energy shifts and autoionization rates are in good agreement with a model based on independant electrons, taking into account interactions in a perturbative approach. We reveal a particularly long persistence of the autoionization rates with the orbital quantum number, explained by the strong coupling of the $6p_{1/2}nl$ autoionizing state with the $5d_{3/2}epsilon l$ continua compared to previously studied divalent atoms.
We study electromagnetically induced transparency (EIT) in the 5s$rightarrow$5p$rightarrow$46s ladder system of a cold $^{87}$Rb gas. We show that the resonant microwave coupling between the 46s and 45p states leads to an Autler-Townes splitting of t he EIT resonance. This splitting can be employed to vary the group index by $pm 10^5$ allowing independent control of the propagation of dark state polaritons. We also demonstrate that microwave dressing leads to enhanced interaction effects. In particular, we present evidence for a $1/R^3$ energy shift between Rydberg states resonantly coupled by the microwave field and the ensuing breakdown of the pair-wise interaction approximation.
Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approximation. Quantum defects, obtained by fitting existing laser sp ectroscopic data, are provided for all $S$, $P$, $D$ and $F$ series of strontium and for the $^3P_2$ series of calcium. The results show qualitative differences with the alkali metal atoms, including isotropically attractive interactions of the strontium $^1S_0$ states and a greater rarity of Forster resonances. Only two such resonances are identified, both in triplet series of strontium. The angular dependence of the long range interaction is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا