ترغب بنشر مسار تعليمي؟ اضغط هنا

Photodissociation of ultracold diatomic strontium molecules with quantum state control

98   0   0.0 ( 0 )
 نشر من قبل Tanya Zelevinsky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunneling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.



قيم البحث

اقرأ أيضاً

Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic chemical reaction at ultracold temperatures allows its qu antum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent qualitative agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.
Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subra diant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding $10^{13}$ via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.
We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
162 - S. Ospelkaus , K.-K. Ni , D. Wang 2009
How does a chemical reaction proceed at ultralow temperatures? Can simple quantum mechanical rules such as quantum statistics, single scattering partial waves, and quantum threshold laws provide a clear understanding for the molecular reactivity unde r a vanishing collision energy? Starting with an optically trapped near quantum degenerate gas of polar $^{40}$K$^{87}$Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions. When these fermionic molecules are prepared in a single quantum state at a temperature of a few hundreds of nanoKelvins, we observe p-wave-dominated quantum threshold collisions arising from tunneling through an angular momentum barrier followed by a near-unity probability short-range chemical reaction. When these molecules are prepared in two different internal states or when molecules and atoms are brought together, the reaction rates are enhanced by a factor of 10 to 100 due to s-wave scattering, which does not have a centrifugal barrier. The measured rates agree with predicted universal loss rates related to the two-body van der Waals length.
Quantum control of reactive systems has enabled microscopic probes of underlying interaction potentials, the opening of novel reaction pathways, and the alteration of reaction rates using quantum statistics. However, extending such control to the qua ntum states of reaction outcomes remains challenging. In this work, we realize this goal through the nuclear spin degree of freedom, a result which relies on the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules, we find that the system retains a near-perfect memory of the reactants nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a bimolecular reaction with quantum state resolution. The techniques demonstrated here open up the possibilities to study quantum interference between reaction pathways, quantum entanglement between reaction products, and ultracold reaction dynamics at the state-to-state level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا