ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum mechanical calculation of Rydberg-Rydberg autoionization rates

199   0   0.0 ( 0 )
 نشر من قبل Martin Kiffner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present quantum mechanical calculations of Auger decay rates for two Rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis of the two-electron state space. We consider large sets of two-atom states with randomly chosen quantum numbers and find that the charge overlap between the two Rydberg electrons allows one to characterise the magnitude of the Auger decay rates. If the electron clouds overlap by more than one percent, the Auger decay rates increase approximately exponentially with the charge overlap. This finding is independent of the energy of the initial state.


قيم البحث

اقرأ أيضاً

In high orbital angular momentum ($ell geq 3$) Rydberg states, the centrifugal barrier hinders close approach of the Rydberg electron to the ion-core. As a result, these core-nonpenetrating Rydberg states can be well described by a simplified model i n which the Rydberg electron is only weakly perturbed by the long-range electric properties (i.e., multipole moments and polarizabilities) of the ion-core. We have used a long-range model to describe the vibrational autoionization dynamics of high-$ell$ Rydberg states of nitric oxide (NO). In particular, our model explains the extensive angular momentum exchange between the ion-core and Rydberg electron that had been previously observed in vibrational autoionization of $f$ ($ell=3$) Rydberg states. These results shed light on a long-standing mechanistic question around these previous observations, and support a direct, vibrational mechanism of autoionization over an indirect, predissociation-mediated mechanism. In addition, our model correctly predicts newly measured total decay rates of $g$ ($ell=4$) Rydberg states because, for $ellgeq4$, the non-radiative decay is dominated by autoionization rather than predissociation. We examine the predicted NO$^+$ ion rotational state distributions generated by vibrational autoionization of $g$ states and discuss applications of our model to achieve quantum state selection in the production of molecular ions.
Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory models for the singlet and triplet S, P, D and F states of strontium based on improved energy level measurements. The new models reveal additional i nsights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series perturbers. Comparison between the predictions of the new models and those of previous empirical and emph{ab initio} studies reveals good agreement with most series, however some discrepancies are highlighted. Using the multichannel quantum defect theory wave functions derived from our models we calculate other observables such as Lande $g_J$-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium.
The coherent interaction between ensembles of helium Rydberg atoms and microwave fields in the vicinity of a solid-state co-planar waveguide is reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38 GHz, have been studied for sta tes with principal quantum numbers in the range 30 - 35 by selective electric-field ionization. An experimental apparatus cooled to 100 K was used to reduce effects of blackbody radiation. Inhomogeneous, stray electric fields emanating from the surface of the waveguide have been characterized in frequency- and time-resolved measurements and coherence times of the Rydberg atoms on the order of 250 ns have been determined.
Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approximation. Quantum defects, obtained by fitting existing laser sp ectroscopic data, are provided for all $S$, $P$, $D$ and $F$ series of strontium and for the $^3P_2$ series of calcium. The results show qualitative differences with the alkali metal atoms, including isotropically attractive interactions of the strontium $^1S_0$ states and a greater rarity of Forster resonances. Only two such resonances are identified, both in triplet series of strontium. The angular dependence of the long range interaction is briefly discussed.
We study electromagnetically induced transparency (EIT) in the 5s$rightarrow$5p$rightarrow$46s ladder system of a cold $^{87}$Rb gas. We show that the resonant microwave coupling between the 46s and 45p states leads to an Autler-Townes splitting of t he EIT resonance. This splitting can be employed to vary the group index by $pm 10^5$ allowing independent control of the propagation of dark state polaritons. We also demonstrate that microwave dressing leads to enhanced interaction effects. In particular, we present evidence for a $1/R^3$ energy shift between Rydberg states resonantly coupled by the microwave field and the ensuing breakdown of the pair-wise interaction approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا