ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of $^{13}$Be probed via secondary beam reactions

90   0   0.0 ( 0 )
 نشر من قبل Giacomo Randisi
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-lying level structure of the unbound neutron-rich nucleus $^{13}$Be has been investigated via breakup on a carbon target of secondary beams of $^{14,15}$B at 35 MeV/nucleon. The coincident detection of the beam velocity $^{12}$Be fragments and neutrons permitted the invariant mass of the $^{12}$Be+$n$ and $^{12}$Be+$n$+$n$ systems to be reconstructed. In the case of the breakup of $^{15}$B, a very narrow structure at threshold was observed in the $^{12}$Be+$n$ channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting $s$-wave virtual state in $^{13}$Be, analysis here of the $^{12}$Be+$n$+$n$ events demonstrated that this was an artifact resulting from the sequential-decay of the $^{14}$Be(2$^+$) state. Single-proton removal from $^{14}$B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)$hbaromega$ shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced J$^pi$=1/2$^+$ and 5/2$^+$ resonances (E$_r$=0.40$pm$0.03 and 0.85$^{+0.15}_{-0.11}$ MeV), whilst the broad higher-lying feature is a second 5/2$^+$ level (E$_r$=2.35$pm$0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2$^+$ and 1/2$^-$ levels lie relatively close together below 1 MeV.



قيم البحث

اقرأ أيضاً

The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extracted from the four measurements, with average values of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first resonance were found to be sensitive to the size of the energy bin used and therefore could not be used to extract a spectroscopic factor.
85 - A. Corsi , Y. Kubota , J. Casal 2019
We present an investigation of the structure of 13Be obtained via a kinematically complete measurement of the (p; pn) reaction in inverse kinematics at 265 MeV/nucleon. The relative energy spectrum of 13Be is compared to Transfer-to-the-Continuum cal culations which use as structure inputs the overlaps of the 14Be ground-state wave function, computed in a three-body model, with the unbound states of the 13Be residual nucleus. The key role of neutron p-wave orbital in the interpretation of the low-relative-energy part of the spectrum is discussed.
The proton-rich isotope 68Br was discovered in secondary fragmentation reactions of fast radioactive beams. Proton-rich secondary beams of 70,71,72Kr and 70Br, produced at the RIKEN Nishina Center and identified by the BigRIPS fragment separator, imp inged on a secondary 9Be target. Unambiguous particle identification behind the secondary target was achieved with the ZeroDegree spectrometer. Based on the expected direct production cross sections from neighboring isotopes, the lifetime of the ground or long-lived isomeric state of 68Br was estimated. The results suggest that secondary fragmentation reactions, where relatively few nucleons are removed from the projectile, offer an alternative way to search for new isotopes, as these reactions populate preferentially low-lying states.
151 - J. Lukasik , P. Adrich , T. Aumann 2007
The discriminant-analysis method has been applied to optimize the exotic-beam charge recognition in a projectile fragmentation experiment. The experiment was carried out at the GSI using the fragment separator (FRS) to produce and select the relativi stic secondary beams, and the ALADIN setup to measure their fragmentation products following collisions with Sn target nuclei. The beams of neutron poor isotopes around 124La and 107Sn were selected to study the isospin dependence of the limiting temperature of heavy nuclei by comparing with results for stable 124Sn projectiles. A dedicated detector to measure the projectile charge upstream of the reaction target was not used, and alternative methods had to be developed. The presented method, based on the multivariate discriminant analysis, allowed to increase the efficacy of charge recognition up to about 90%, which was about 20% more than achieved with the simple scalar methods.
93 - N. Soic , M.Freer , L. Donadille 2003
A study of the 7Li(9Be,4He9Be)3H reaction at E{beam}=70 MeV has been performed using resonant particle spectroscopy techniques and provides a measurement of alpha-decaying states in 13C. Excited states are observed at 12.0, 13.4, 14.1, 14.6, 15.2, 16 .8, 17.9, 18.7, 21.3 and 23.9 MeV. This study provides the first measurement of the three highest energy states. Angular distribution measurements have been performed and have been employed to indicate the transferred angular momentum for the populated states. These data are compared with recent speculations of the presence of chain-like structures in 13C.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا