ترغب بنشر مسار تعليمي؟ اضغط هنا

Discriminant Analysis and Secondary-Beam Charge Recognition

152   0   0.0 ( 0 )
 نشر من قبل Jerzy Lukasik
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The discriminant-analysis method has been applied to optimize the exotic-beam charge recognition in a projectile fragmentation experiment. The experiment was carried out at the GSI using the fragment separator (FRS) to produce and select the relativistic secondary beams, and the ALADIN setup to measure their fragmentation products following collisions with Sn target nuclei. The beams of neutron poor isotopes around 124La and 107Sn were selected to study the isospin dependence of the limiting temperature of heavy nuclei by comparing with results for stable 124Sn projectiles. A dedicated detector to measure the projectile charge upstream of the reaction target was not used, and alternative methods had to be developed. The presented method, based on the multivariate discriminant analysis, allowed to increase the efficacy of charge recognition up to about 90%, which was about 20% more than achieved with the simple scalar methods.



قيم البحث

اقرأ أيضاً

The low-lying level structure of the unbound neutron-rich nucleus $^{13}$Be has been investigated via breakup on a carbon target of secondary beams of $^{14,15}$B at 35 MeV/nucleon. The coincident detection of the beam velocity $^{12}$Be fragments an d neutrons permitted the invariant mass of the $^{12}$Be+$n$ and $^{12}$Be+$n$+$n$ systems to be reconstructed. In the case of the breakup of $^{15}$B, a very narrow structure at threshold was observed in the $^{12}$Be+$n$ channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting $s$-wave virtual state in $^{13}$Be, analysis here of the $^{12}$Be+$n$+$n$ events demonstrated that this was an artifact resulting from the sequential-decay of the $^{14}$Be(2$^+$) state. Single-proton removal from $^{14}$B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)$hbaromega$ shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced J$^pi$=1/2$^+$ and 5/2$^+$ resonances (E$_r$=0.40$pm$0.03 and 0.85$^{+0.15}_{-0.11}$ MeV), whilst the broad higher-lying feature is a second 5/2$^+$ level (E$_r$=2.35$pm$0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2$^+$ and 1/2$^-$ levels lie relatively close together below 1 MeV.
We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $Lambda$, $Sigma$, $Xi$, and $Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $costheta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $Xi$ and $Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $Kpi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^ast(Kpi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $kappa/K_0^ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.
Face images captured in heterogeneous environments, e.g., sketches generated by the artists or composite-generation software, photos taken by common cameras and infrared images captured by corresponding infrared imaging devices, usually subject to la rge texture (i.e., style) differences. This results in heavily degraded performance of conventional face recognition methods in comparison with the performance on images captured in homogeneous environments. In this paper, we propose a novel sparse graphical representation based discriminant analysis (SGR-DA) approach to address aforementioned face recognition in heterogeneous scenarios. An adaptive sparse graphical representation scheme is designed to represent heterogeneous face images, where a Markov networks model is constructed to generate adaptive sparse vectors. To handle the complex facial structure and further improve the discriminability, a spatial partition-based discriminant analysis framework is presented to refine the adaptive sparse vectors for face matching. We conducted experiments on six commonly used heterogeneous face datasets and experimental results illustrate that our proposed SGR-DA approach achieves superior performance in comparison with state-of-the-art methods.
We present measurements of net charge fluctuations in $Au + Au$ collisions at $sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $ u_{+-{rm,dyn}}$. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate $1/N_{ch}$ scaling, but display approximate $1/N_{part}$ scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Nuclear fission of several neutron-deficient actinides and pre-actinides from excitation energies around 11 MeV was studied at GSI Darmstadt by use of relativistic secondary beams. The characteristics of multimodal fission of nuclei around 226Th are systematically investigated and interpreted as the superposition of three fission channels. Properties of these fission channels have been determined for 15 systems. A global view on the properties of fission channels including previous results is presented. The positions of the asymmetric fission channels are found to be constant in element number over the whole range of systems investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا