ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of 13Be probed via quasi-free scattering

86   0   0.0 ( 0 )
 نشر من قبل Anna Corsi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an investigation of the structure of 13Be obtained via a kinematically complete measurement of the (p; pn) reaction in inverse kinematics at 265 MeV/nucleon. The relative energy spectrum of 13Be is compared to Transfer-to-the-Continuum calculations which use as structure inputs the overlaps of the 14Be ground-state wave function, computed in a three-body model, with the unbound states of the 13Be residual nucleus. The key role of neutron p-wave orbital in the interpretation of the low-relative-energy part of the spectrum is discussed.

قيم البحث

اقرأ أيضاً

The low-lying level structure of the unbound neutron-rich nucleus $^{13}$Be has been investigated via breakup on a carbon target of secondary beams of $^{14,15}$B at 35 MeV/nucleon. The coincident detection of the beam velocity $^{12}$Be fragments an d neutrons permitted the invariant mass of the $^{12}$Be+$n$ and $^{12}$Be+$n$+$n$ systems to be reconstructed. In the case of the breakup of $^{15}$B, a very narrow structure at threshold was observed in the $^{12}$Be+$n$ channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting $s$-wave virtual state in $^{13}$Be, analysis here of the $^{12}$Be+$n$+$n$ events demonstrated that this was an artifact resulting from the sequential-decay of the $^{14}$Be(2$^+$) state. Single-proton removal from $^{14}$B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)$hbaromega$ shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced J$^pi$=1/2$^+$ and 5/2$^+$ resonances (E$_r$=0.40$pm$0.03 and 0.85$^{+0.15}_{-0.11}$ MeV), whilst the broad higher-lying feature is a second 5/2$^+$ level (E$_r$=2.35$pm$0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2$^+$ and 1/2$^-$ levels lie relatively close together below 1 MeV.
The transverse spin correlations A_{x,x} and A_{y,y} have been measured in the pol{d} pol{p} -> p_spec {pp}_s pi- reaction at COSY-ANKE at 353 MeV per nucleon. Here {pp}_s denotes a proton-proton pair with low excitation energy, which is dominantly i n the 1S0 state. By measuring three protons in the final state it was possible to extract events where there was a spectator proton p_spec so that the reaction could be interpreted in terms of quasi-free pol{n} pol{p} -> {pp}_s pi-. The proton analyzing power in this reaction was also deduced from this data set by averaging over the polarization of the deuteron beam. The values of A_y^p were shown to be consistent with a refined analysis of our earlier results obtained with a polarized proton incident on a deuterium target. Taking these data in combination with our earlier measurements of the differential cross sections and analyzing powers in the pol{p} p -> {pp}_s pi^0 reaction, a more robust partial wave decomposition was achieved. Three different acceptable solutions were found and the only way of resolving this ambiguity without further theoretical input would be through a measurement of the mixed spin-correlation parameter A_{x,z}.
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $oslash$ $time s$ 64 cm NaI(Tl) photon detector and the Gottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $theta^{LAB}_gamma=136.2^circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(gamma,pi^+ n)$. The free proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $alpha-beta= 9.8pm 3.6(stat){}^{2.1}_1.1(syst)pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $alpha +beta=15.2pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $alpha_n=12.5pm 1.8(stat){}^{+1.1}_{-0.6}pm 1.1(model)$ and $beta_n=2.7mp 1.8(stat){}^{+0.6}_{-1.1}(syst)mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $gamma^{(n)}_pi=(58.6pm 4.0)times 10^{-4}fm^4$.
288 - S.Barsov , Z.Bagdasarian , S.Dymov 2018
The analyzing powers in proton-deuteron elastic and proton-neutron quasi-elastic scattering have been measured at small angles using a polarized proton beam at the COSY storage ring incident on an unpolarized deuterium target. The data were taken at 796MeV and five higher energies from 1600MeV to 2400MeV. The analyzing power in pd elastic scattering was studied by detecting the low energy recoil deuteron in telescopes placed symmetrically in the COSY plane to the left and right of the beam whereas for pn quasi-elastic scattering a low energy proton was registered in one of the telescopes in coincidence with a fast scattered proton measured in the ANKE magnetic spectrometer. Though the experiment explores new domains, the results are consistent with the limited published information.
316 - I. Ciepa{l} , G. Khatri , K. Bodek 2019
A set of differential cross section of the three-body $^{2}$H($d$,$dp$)$n$ breakup reaction at 160 MeV deuteron beam energy are presented for 147 kinematically complete configurations near the quasi-free scattering kinematics. The experiment was perf ormed at KVI in Groningen, the Netherlands using the BINA detector. The cross-section data have been normalized to the $^{2}$H($d$,$d$)$^{2}$H elastic scattering cross section. The data are compared to the recent single-scattering approximation (SSA) calculations for three-cluster breakup in deuteron-deuteron collisions. Confronting the SSA predictions with the experimental data shows that SSA provides the correct order of magnitude of the cross-section data. The studied energy is probably too low to meet the SSA assumptions which prevents better accuracy of the description.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا