ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic-scale inversion of spin polarization at an organic-antiferromagnetic interface

65   0   0.0 ( 0 )
 نشر من قبل Nuala M Caffrey
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using first-principles calculations, we show that the magnetic properties of a two-dimensional antiferromagnetic transition-metal surface are modified on the atomic scale by the adsorption of small organic molecules. We consider benzene (C6H6), cyclooctatetraene (C8H8) and a small transition metal - benzene complex (BzV) adsorbed on a single atomic layer of Mn deposited on the W(110) surface -- a surface which exhibits a nearly antiferromagnetic alignment of the magnetic moments in adjacent Mn rows. Due to the spin-dependent hybridization of the molecular pz orbitals with the d states of the Mn monolayer there is a significant reduction of the magnetic moments in the Mn film. Furthermore, the spin-polarization at this organic-antiferromagnetic interface is found to be modulated on the atomic scale, both enhanced and inverted, as a result of the molecular adsorption. We show that this effect can be resolved by spin-polarized scanning tunneling microscopy (SP-STM). Our simulated SP-STM images display a spatially-dependent spin-resolved vacuum charge density above an adsorbed molecule -- i.e., different regions above the molecule sustain different signs of spin polarization. While states with s and p symmetry dominate the vacuum charge density in the vicinity of the Fermi energy for the clean magnetic surface, we demonstrate that after a molecule is adsorbed those d-states, which are normally suppressed due to their symmetry, can play a crucial role in the vacuum due to their interaction with the molecular orbitals. We also model the effect of small deviations from perfect antiferromagnetic ordering, induced by the slight canting of magnetic moments due to the spin spiral ground state of Mn/W(110).

قيم البحث

اقرأ أيضاً

Ferromagnetic metal-organic semiconductor (FM-OSC) hybrid interfaces have shown to play an important role for spin injection in organic spintronics. Here, 11,11,12,12-tetracyanonaptho-2,6-quinodimethane (TNAP) is introduced as an interfacial layer in Co-OSCs heterojunction with an aim to tune the spin injection. The Co/TNAP interface is investigated by use of X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS), near edge X-ray absorption fine structure (NEXAFS) and X-ray magnetic circular dichroism (XMCD). Hybrid interface states (HIS) are observed at Co/TNAP interface resulting from chemical interaction between Co and TNAP. The energy level alignment at Co/TNAP/OSCs interface is also obtained, and a reduction of the hole injection barrier is demonstrated. XMCD results confirm sizeable spin polarization at the Co/TNAP hybrid interface.
235 - Weiwei Lin , C. L. Chien 2016
Spin Hall magnetoresistance (SMR) has been observed in Pt/NiO/Y3Fe5O12 (YIG) heterostructures with characteristics very different from those in Pt/YIG. We show that the SMR in Pt/NiO/YIG strongly correlates with spin conductance, both sharing very st rong temperature dependence due to antiferromagnetic magnons and spin fluctuation. This phenomenon indicates that spin current generated by spin Hall effect in the Pt transmits through the insulating NiO and is reflected from the NiO/YIG interface. Inverted SMR has been observed below a temperature which increases with the NiO thickness, suggesting spin-flip reflection from the antiferromagnetic NiO exchange coupled with the YIG.
We report direct experimental evidence showing induced magnetic moments on Ge at the interface in an Fe/Ge system. Details of the x-ray magnetic circular dichroism and resonant magnetic scattering at the Ge L edge demonstrate the presence of spin-pol arized {it s} states at the Fermi level, as well as {it d} character moments at higher energy, which are both oriented antiparallel to the moment of the Fe layer. Use of the sum rules enables extraction of the L/S ratio, which is zero for the {it s} part and $sim0.5$ for the {it d} component. These results are consistent with layer-resolved electronic structure calculations, which estimate the {it s} and {it d} components of the Ge moment are anti-parallel to the Fe {it 3d} moment and have a magnitude of $sim0.01 mu_B$.
Spin-polarized currents play a key role in spintronics. Recently, it has been found that antiferromagnets with a non-spin-degenerate band structure can efficiently spin-polarize electric currents, even though their net magnetization is zero. Among th e antiferromagnetic metals with magnetic space group symmetry supporting this functionality, the noncollinear antiferromagnetic antiperovskites ANMn$_3$ (A = Ga, Ni, Sn, and Pt) are especially promising. This is due to their high Neel temperatures and a good lattice match to perovskite oxide substrates, offering possibilities of high structural quality heterostructures based on these materials. Here, we investigate the spin polarization of antiferromagnetic ANMn$_3$ metals using first-principles density functional theory calculations. We find that the spin polarization of the longitudinal currents in these materials is comparable to that in widely used ferromagnetic metals, and thus can be exploited in magnetic tunnel junctions and spin transfer torque devices. Moreover, for certain film growth directions, the out-of-plane transverse spin currents with a giant charge-to-spin conversion efficiency can be achieved, implying that the ANMn$_3$ antiperovskites can be used as efficient spin sources. These properties make ANMn$_3$ compounds promising for application in spintronics.
We study the magnetic interactions in atomic layers of Fe and 5d transition-metals such as Os, Ir, and Pt on the (001) surface of Rh using first-principles calculations based on density functional theory. For both stackings of the 5d-Fe bilayer on Rh (001) we observe a transition from an antiferromagnetic to a ferromagnetic nearest-neighbor exchange interaction upon 5d band filling. In the sandwich structure 5d/Fe/Rh(001) the nearest neighbor exchange is significantly reduced. For FeIr bilayers on Rh(001) we consider spin spiral states in order to determine exchange constants beyond nearest neighbors. By including spin-orbit coupling we obtain the Dzyaloshinskii-Moriya interaction (DMI). The magnetic interactions in Fe/Ir/Rh(001) are similar to those of Fe/Ir(001) for which an atomic scale spin lattice has been predicted. However, small deviations between both systems remain due to the different lattice constants and the Rh vs. Ir surface layers. This leads to slightly different exchange constants and DMI and the easy magnetization direction switches from out-of-plane for Fe/Ir(001) to in-plane for Fe/Ir/Rh(001). Therefore a fine tuning of magnetic interactions is possible by using single 5d transition-metal layers which may allow to tailor antiferromagnetic skyrmions in this type of ultrathin films. In the sandwich structure Ir/Fe/Rh(001) we find a strong exchange frustration due to strong hybridization of the Fe layer with both Ir and Rh which drastically reduces the nearest-neighbor exchange. The energy contribution from the DMI becomes extremely large and DMI beyond nearest neighbors cannot be neglected. We attribute the large DMI to the low coordination of the Ir layer at the surface. We demonstrate that higher- order exchange interactions are significant in both systems which may be crucial for the magnetic ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا