ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Interface States and Spin Polarization at Ferromagnetic Metal-Organic Heterojunctions: Interface Engineering for Efficient Spin Injection in Organic Spintronics

124   0   0.0 ( 0 )
 نشر من قبل Shengwei Shi Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferromagnetic metal-organic semiconductor (FM-OSC) hybrid interfaces have shown to play an important role for spin injection in organic spintronics. Here, 11,11,12,12-tetracyanonaptho-2,6-quinodimethane (TNAP) is introduced as an interfacial layer in Co-OSCs heterojunction with an aim to tune the spin injection. The Co/TNAP interface is investigated by use of X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS), near edge X-ray absorption fine structure (NEXAFS) and X-ray magnetic circular dichroism (XMCD). Hybrid interface states (HIS) are observed at Co/TNAP interface resulting from chemical interaction between Co and TNAP. The energy level alignment at Co/TNAP/OSCs interface is also obtained, and a reduction of the hole injection barrier is demonstrated. XMCD results confirm sizeable spin polarization at the Co/TNAP hybrid interface.



قيم البحث

اقرأ أيضاً

Using first-principles calculations, we show that the magnetic properties of a two-dimensional antiferromagnetic transition-metal surface are modified on the atomic scale by the adsorption of small organic molecules. We consider benzene (C6H6), cyclo octatetraene (C8H8) and a small transition metal - benzene complex (BzV) adsorbed on a single atomic layer of Mn deposited on the W(110) surface -- a surface which exhibits a nearly antiferromagnetic alignment of the magnetic moments in adjacent Mn rows. Due to the spin-dependent hybridization of the molecular pz orbitals with the d states of the Mn monolayer there is a significant reduction of the magnetic moments in the Mn film. Furthermore, the spin-polarization at this organic-antiferromagnetic interface is found to be modulated on the atomic scale, both enhanced and inverted, as a result of the molecular adsorption. We show that this effect can be resolved by spin-polarized scanning tunneling microscopy (SP-STM). Our simulated SP-STM images display a spatially-dependent spin-resolved vacuum charge density above an adsorbed molecule -- i.e., different regions above the molecule sustain different signs of spin polarization. While states with s and p symmetry dominate the vacuum charge density in the vicinity of the Fermi energy for the clean magnetic surface, we demonstrate that after a molecule is adsorbed those d-states, which are normally suppressed due to their symmetry, can play a crucial role in the vacuum due to their interaction with the molecular orbitals. We also model the effect of small deviations from perfect antiferromagnetic ordering, induced by the slight canting of magnetic moments due to the spin spiral ground state of Mn/W(110).
Whereas spintronics brings the spin degree of freedom to electronic devices, molecular/organic electronics adds the opportunity to play with the chemical versatility. Here we show how, as a contender to commonly used inorganic materials, organic/mole cular based spintronics devices can exhibit very large magnetoresistance and lead to tailored spin polarizations. We report on giant tunnel magnetoresistance of up to 300% in a (La,Sr)MnO3/Alq3/Co nanometer size magnetic tunnel junction. Moreover, we propose a spin dependent transport model giving a new understanding of spin injection into organic materials/molecules. Our findings bring a new insight on how one could tune spin injection by molecular engineering and paves the way to chemical tailoring of the properties of spintronics devices.
We investigate the absorption of a spin current at a ferromagnetic-metal/Pt-oxide interface by measuring current-induced ferromagnetic resonance. The spin absorption was characterized by the magnetic damping of the heterostructure. We show that the m agnetic damping of a Ni$_{81}$Fe$_{19}$ film is clearly enhanced by attaching Pt-oxide on the Ni$_{81}$Fe$_{19}$ film. The damping enhancement is disappeared by inserting an ultrathin Cu layer between the Ni$_{81}$Fe$_{19}$ and Pt-oxide layers. These results demonstrate an essential role of the direct contact between the Ni$_{81}$Fe$_{19}$ and Pt-oxide to induce sizable interface spin-orbit coupling. Furthermore, the spin-absorption parameter of the Ni$_{81}$Fe$_{19}$/Pt-oxide interface is comparable to that of intensively studied heterostructures with strong spin-orbit coupling, such as an oxide interface, topological insulators, metallic junctions with Rashba spin-orbit coupling. This result illustrates strong spin-orbit coupling at the ferromagnetic-metal/Pt-oxide interface, providing an important piece of information for quantitative understanding the spin absorption and spin-charge conversion at the ferromagnetic-metal/metallic-oxide interface.
130 - C. Cerqueira , J. Y. Qin , H. Dang 2019
Due to the difficulty to grow high quality semiconductors on ferromagnetic metals, the study of spin diffusion transport in Si was only limited to lateral geometry devices. In this work, by using ultra-high vacuum wafer-bonding technique, we have suc cessfully fabricated metal semiconductor metal CoFeB/MgO/Si/Pt vertical structures. We hereby demonstrate pure spin-current injection and transport in the perpendicular current flow geometry over a distance larger than 2mu m in n-type Si at room temperature. In those experiments, a pure propagating spin-current is generated via ferromagnetic resonance spin-pumping and converted into a measurable voltage by using the inverse spin-Hall effect occurring in the top Pt layer. A systematic study by varying both Si and MgO thicknesses reveals the important role played by the localized states at the MgO/Si interface for the spin-current generation. Proximity effects involving indirect exchange interactions between the ferromagnet and the MgO/Si interface states appears to be a prerequisite to establish the necessary out-of-equilibrium spin-population in Si under the spin-pumping action.
549 - Z. Qiu , M. Uruichi , D. Hou 2015
Spin-current injection into an organic semiconductor $rm{kappatext{-}(BEDTtext{-}TTF)_2Cu[N(CN)_2]Br}$ film induced by the spin pumping from an yttrium iron garnet (YIG) film. When magnetization dynamics in the YIG film is excited by ferromagnetic or spin-wave resonance, a voltage signal was found to appear in the $rm{kappatext{-}(BEDTtext{-}TTF)_2Cu[N(CN)_2]Br}$ film. Magnetic-field-angle dependence measurements indicate that the voltage signal is governed by the inverse spin Hall effect in $rm{kappatext{-}(BEDTtext{-}TTF)_2Cu[N(CN)_2]Br}$. We found that the voltage signal in the $rm{kappatext{-}(BEDTtext{-}TTF)_2Cu[N(CN)_2]Br}$/YIG system is critically suppressed around 80 K, around which magnetic and/or glass transitions occur, implying that the efficiency of the spin-current injection is suppressed by fluctuations which critically enhanced near the transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا