ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the flux effect on nuclear pressure vessel steel by measurement of magnetic properties

84   0   0.0 ( 0 )
 نشر من قبل Julian Milano
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since Reactor Pressure Vessel steels are ferromagnetic, they provide a convenient means to monitor changes in the mechanical properties of the material upon irradiation with high energy particles, by measuring their magnetic properties. Here, we discuss the correlation between these two properties (i.e. mechanical and magnetic properties) and microstructure, by studying the flux effect on the nuclear pressure vessel steel used in reactors currently under construction in Argentina. Charpy-V notched specimens of this steel were irradiated in the RA1 experimental reactor at 275{deg}C with two lead factors (LFs), 93 and 183. The magnetic properties were studied by means of DC magnetometry and ferromagnetic resonance. The results show that the coercive field and magnetic anisotropy spatial distribution are sensitive to the LF and can be explained by taking into account the evolution of the microstructure with this parameter. The saturation magnetization shows a dominant dependence on the accumulated damage. Consequently, the mentioned techniques are suitable to estimate the degradation of the reactor vessel steel.

قيم البحث

اقرأ أيضاً

Due to the mechanical and inertness properties of the Epsilon phase, its formation as a compact monolayer is most wanted in plasma surface treatments of steels. This phase can be obtained by the inclusion of carbon species in the plasma. In this work , we present a systematic study of the carbon influence on the compound layer in an AISI H13 tool steel by pulsed plasma nitrocarburizing process with different gaseous ratios.
Multiferroic BiFeO3 ceramics have been doped with Ca. The smaller ionic size of Ca compared with Bi means that doping acts as a proxy for hydrostatic pressure, at a rate of 1%Ca=0.3GPa. It is also found that the magnetic Neel temperature (TNeel) incr eases as Ca concentration increases, at a rate of 0.66K per 1%Ca (molar). Based on the effect of chemical pressure on TNeel, we argue that applying hydrostatic pressure to pure BiFeO3 can be expected to increase its magnetic transition temperature at a rate around ~2.2K/GPa. The results also suggest that pressure (chemical or hydrostatic) could be used to bring the ferroelectric critical temperature, Tc, and the magnetic TNeel closer together, thereby enhancing magnetoelectric coupling, provided that electrical conductivity can be kept sufficiently low.
The effect of vacuum annealing thin films of the compensated ferrimagnetic half-metal Mn2RuxGa at temperatures from 250 to 400 degree Celsius is investigated. The 39.3 nm films deposited on (100) MgO substrates exhibit perpendicular magnetic anisotro py due to a small 1% tetragonal elongation induced by substrate strain. The main change on annealing is a modification in the compensation temperature, which first increases from 50 K for the as-deposited film to 185 K after annealing at 250 degree Celsius, and then falls to 140 K after annealing at 400 degree Celsius. There are minor changes in the atomic order, coercivity, resistivity and anomalous Hall effect (AHE), but the net magnetization measured by SQUID magnetometry with the field applied in-plane or perpendicular-to-the-plane changes more significantly. It saturates at 20 to 30 kA/m at room temperature, and a small soft component is seen in the perpendicular SQUID loops which is absent in the square AHE hysteresis loops. This is explained by the half-metallic nature of the compound; the AHE probes only the 4c Mn sublattice that provides the spin-polarized electrons at the Fermi level, whereas the SQUID measures the sum of the oppositely-aligned 4c and 4a sublattice magnetisations.
Conventional Oxide dispersion strengthened steels are characterized by thermally stable, high density of Y-Ti-O nanoclusters, which are responsible for their high creep strength. Ti plays a major role in obtaining a high density of ultrafine particle s of optimum size range of 2-10 nm. In Al-containing ODS steels developed for corrosion resistance, Y-Al-O clusters formed are of size range 20 -100 nm, and Ti fails in making dispersions finer in the presence of Al. Usage of similar alloying elements like Zr in place of Ti is widely considered. In this study, binding energies of different stages of Y-Zr-O-Vacancy and Y-Al-O-Vacancy complexes in the bcc Iron matrix are studied by first-principle calculations. It is shown that in all the stages of formation, Y-Zr-O-Vacancy clusters have higher binding energy than Y-Al-O-Vacancy clusters and hence in ferritic steel containing both Zr and Al, Y-Zr-O-Vacancy clusters are more stable and more favored to nucleate than Y-Al-O-Vacancy clusters. The bonding nature in each stage is analyzed using charge density difference plots for the plausible reason for higher stability of Y-Zr-O-Vacancy clusters.
We report on the magnetic properties of zinc ferrite thin film deposited on SrTiO$_3$ single crystal using pulsed laser deposition. X-ray diffraction result indicates the highly oriented single phase growth of the film along with the presence of the strain. In comparison to the bulk antiferromagnetic order, the as-deposited film has been found to exhibit ferrimagnetic ordering with a coercive field of 1140~Oe at 5~K. A broad maximum, at $approx$105~K, observed in zero-field cooled magnetization curve indicates the wide grain size distribution for the as-deposited film. Reduction in magnetization and blocking temperature has been observed after annealing in both argon as well as oxygen atmospheres, where the variation was found to be dependent on the annealing temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا