ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the Effect of Annealing on the Properties of Mn2RuxGa Thin Films

96   0   0.0 ( 0 )
 نشر من قبل Katarzyna Siewierska
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of vacuum annealing thin films of the compensated ferrimagnetic half-metal Mn2RuxGa at temperatures from 250 to 400 degree Celsius is investigated. The 39.3 nm films deposited on (100) MgO substrates exhibit perpendicular magnetic anisotropy due to a small 1% tetragonal elongation induced by substrate strain. The main change on annealing is a modification in the compensation temperature, which first increases from 50 K for the as-deposited film to 185 K after annealing at 250 degree Celsius, and then falls to 140 K after annealing at 400 degree Celsius. There are minor changes in the atomic order, coercivity, resistivity and anomalous Hall effect (AHE), but the net magnetization measured by SQUID magnetometry with the field applied in-plane or perpendicular-to-the-plane changes more significantly. It saturates at 20 to 30 kA/m at room temperature, and a small soft component is seen in the perpendicular SQUID loops which is absent in the square AHE hysteresis loops. This is explained by the half-metallic nature of the compound; the AHE probes only the 4c Mn sublattice that provides the spin-polarized electrons at the Fermi level, whereas the SQUID measures the sum of the oppositely-aligned 4c and 4a sublattice magnetisations.



قيم البحث

اقرأ أيضاً

We report on the magnetic properties of zinc ferrite thin film deposited on SrTiO$_3$ single crystal using pulsed laser deposition. X-ray diffraction result indicates the highly oriented single phase growth of the film along with the presence of the strain. In comparison to the bulk antiferromagnetic order, the as-deposited film has been found to exhibit ferrimagnetic ordering with a coercive field of 1140~Oe at 5~K. A broad maximum, at $approx$105~K, observed in zero-field cooled magnetization curve indicates the wide grain size distribution for the as-deposited film. Reduction in magnetization and blocking temperature has been observed after annealing in both argon as well as oxygen atmospheres, where the variation was found to be dependent on the annealing temperature.
Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films, with different thickness ranging from 20 nm up to 330 nm, were deposited on (100)-oriented strontium titanate (STO) substrates by pulsed laser deposition, and their structure and morphology characterized at room temperature. Magnetic and electric transport properties of the as-processed thin films reveal an abnormal behavior in the temperature dependent magnetization M(T) below the antiferrodistortive STO phase transition (TSTO) and also an anomaly in the magnetoresistance and electrical resistivity close to the same temperature. Up to 100 nm LSMO thin films, an in-excess magnetization and pronounced changes in the coercivity are evidenced, achieved through the interface-mediated magnetoelastic coupling with antiferrodistortive domain wall movement occurring below TSTO. Contrarily, for thicker LSMO thin films, above 100 nm, an in-defect magnetization is observed. This reversed behavior can be understood within the emergence in the upper layer of the film, observed by high resolution transmission electron microscopy, of a branched structure needed to relax elastic energy stored in the film which leads to randomly oriented magnetic domain reconstructions. For enough high-applied magnetic fields, as thermodynamic equilibrium is reached, a fully suppression of the anomalous magnetization occurs, wherein the temperature dependence of the magnetization starts to follow the expected Brillouin behavior.
10 nm and 50 nm Co$_{2}$FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to the rel ation CFA(001)[110]//MgO(001)[100] epitaxial relation), respectively for CFA films grown on a Si and on a MgO substrate. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta) while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with $T_{a}$. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.3*10^-3 and 1.1*10^-3 for films of 50 nm thickness annealed at 615 {deg}C grown on MgO and on Si, respectively).
We report a clear correspondence between changes in the Curie temperature and carrier density upon annealing in epitaxially grown (Ga,Mn)As layers with thicknesses in the range between 5 nm and 20 nm. The changes are dependent on the layer thickness, indicating that the (Ga,Mn)As - GaAs interface has importance for the physical properties of the (Ga,Mn)As layer. The magnetoresistance shows additional features when compared to thick (Ga,Mn)As layers, that are at present of unknown origin.
Epitaxial LaRh1/2Mn1/2O3 thin films have been grown on (001)-oriented LaAlO3 and SrTiO3 substrates using pulsed laser deposition. The optimized thin film samples are semiconducting and ferromagnetic with a Curie temperature close to 100 K, a coercive field of 1200 Oe, and a saturation magnetization of 1.7muB per formula unit. The surface texture, structural, electrical, and magnetic properties of the LaRh1/2Mn1/2O3 films was examined as a function of the oxygen concentration during deposition. While an elevated oxygen concentration yields thin films with optimal magnetic properties, slightly lower oxygen concentrations result in films with improved texture and crystallinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا