ﻻ يوجد ملخص باللغة العربية
Conventional Oxide dispersion strengthened steels are characterized by thermally stable, high density of Y-Ti-O nanoclusters, which are responsible for their high creep strength. Ti plays a major role in obtaining a high density of ultrafine particles of optimum size range of 2-10 nm. In Al-containing ODS steels developed for corrosion resistance, Y-Al-O clusters formed are of size range 20 -100 nm, and Ti fails in making dispersions finer in the presence of Al. Usage of similar alloying elements like Zr in place of Ti is widely considered. In this study, binding energies of different stages of Y-Zr-O-Vacancy and Y-Al-O-Vacancy complexes in the bcc Iron matrix are studied by first-principle calculations. It is shown that in all the stages of formation, Y-Zr-O-Vacancy clusters have higher binding energy than Y-Al-O-Vacancy clusters and hence in ferritic steel containing both Zr and Al, Y-Zr-O-Vacancy clusters are more stable and more favored to nucleate than Y-Al-O-Vacancy clusters. The bonding nature in each stage is analyzed using charge density difference plots for the plausible reason for higher stability of Y-Zr-O-Vacancy clusters.
Ab initio simulations carried out in different atomic cluster configurations in bcc Fe matrix containing Zr and Al suggest energetic favorability of Y-Zr-O phase nucleation, preferably with trigonal Y4Zr3O12 structure. Subsequently, the HRTEM investi
So far, the circular photogalvanic effect (CPGE) is the only possible quantized signal in Weyl semimetals. With inversion and mirror symmetries broken, Weyl and multifold fermions in band structures with opposite chiralities can stay at different ene
We study the Raman spectrum of CrI$_3$, a material that exhibits magnetism in a single-layer. We employ first-principles calculations within density functional theory to determine the effects of polarization, strain, and incident angle on the phonon
Based on first-principles calculation, it has been predicted that the magnetic anisotropy energy (MAE) in Co-doped ZnO (Co:ZnO) depends on electron-filling. Results show that the charge neutral Co:ZnO presents a easy plane magnetic state. While modif
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {it ab initio} total energy calculations.