ﻻ يوجد ملخص باللغة العربية
To analyse stellar populations in galaxies a widely used method is to apply theoretically derived responses of stellar spectra and line indices to element abundance variations, hereafter referred to as response functions. These are applied in a differential way, to base models, in order to generate spectra or indices with different abundance patterns. In this paper sets of such response functions for three different stellar evolutionary stages are tested with new empirical [Mg/Fe] abundance data for the MILES stellar spectral library. Recent theoretical models and observations are used to investigate the effects of [Fe/H], [Mg/H] and overall [Z/H] on spectra, via ratios of spectra for similar stars. Global effects of changes in abundance patterns are investigated empirically through direct comparisons of similar stars from the MILES library, highlighting the impact of abundance effects in the blue part of the spectrum, particularly for lower temperature stars. It is found that the relative behaviour of iron sensitive line indices are generally well predicted by response functions, whereas Balmer line indices are not. Other indices tend to show large scatter about the predicted mean relations. Implications for element abundance and age studies in stellar populations are discussed and ways forward are suggested to improve the match with behaviours of spectra and line strength indices observed in real stars.
We investigate aluminum abundance variations in the stellar populations of globular clusters using both literature measurements of sodium and aluminum and APOGEE measurements of nitrogen and aluminum abundances. For the latter, we show that the Payne
NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition a
Gaia and its complementary spectroscopic surveys combined will yield the most comprehensive database of kinematic and chemical information of stars in the Milky Way. The Gaia FGK benchmark stars play a central role in this matter as they are calibrat
Aims. We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of 5 distant sources have been assembled, for which 2 spectra - VLT/UVES or Keck/HIRES - taken several years apart are available. Me
We analyze a set of optical-to-near-infrared long-slit nuclear spectra of 16 infrared-luminous spiral galaxies. All of the studied sources present H$_2$ emission, which reflects the star-forming nature of our sample, and they clearly display H I emis