ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical/NIR stellar absorption and emission-line indices from luminous infrared galaxies

117   0   0.0 ( 0 )
 نشر من قبل Rogerio Riffel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze a set of optical-to-near-infrared long-slit nuclear spectra of 16 infrared-luminous spiral galaxies. All of the studied sources present H$_2$ emission, which reflects the star-forming nature of our sample, and they clearly display H I emission lines in the optical. Their continua contain many strong stellar absorption lines, with the most common features due to Ca I, Ca II, Fe I, Na I, Mg I, in addition to prominent absorption bands of TiO, VO, ZrO, CN and CO. We report a homogeneous set of equivalent width (EW) measurements for 45 indices, from optical to NIR species for the 16 star-forming galaxies as well as for 19 early type galaxies where we collected the data from the literature. This selected set of emission and absorption-feature measurements can be used to test predictions of the forthcoming generations of stellar population models. We find correlations among the different absorption features and propose here correlations between optical and NIR indices, as well as among different NIR indices, and compare them with model predictions. While for the optical absorption features the models consistently agree with the observations,the NIR indices are much harder to interpret. For early-type spirals the measurements agree roughly with the models, while for star-forming objects they fail to predict the strengths of these indices.



قيم البحث

اقرأ أيضاً

We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS ). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, $Sigma_{rm IR}$. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is $n_{rm e}$ = 41 cm$^{-3}$. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, $n_{rm H}$, and intensity of the interstellar radiation field, in units of G$_0$, and find G$_0$/$n_{rm H}$ ratios ~0.1-50 cm$^3$, with ULIRGs populating the upper end of the distribution. There is a relation between G$_0$/$n_{rm H}$ and $Sigma_{rm IR}$, showing a critical break at $Sigma_{rm IR}^{star}$ ~ 5 x 10$^{10}$ Lsun/kpc$^2$. Below $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ remains constant, ~0.32 cm$^3$, and variations in $Sigma_{rm IR}$ are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ increases rapidly with $Sigma_{rm IR}$, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources.
We present Herschel/PACS observations of extended [CII]157.7{mu}m line emission detected on ~ 1 - 10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS). We find that most of the extra-nu clear emission show [CII]/FIR ratios >~ 4 x 10^-3, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse inter-stellar medium (ISM) of our Galaxy. The [CII] deficits found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [CII]/FIR ratios. We find an anti-correlation between [CII]/FIR and the luminosity surface density, {Sigma}_IR, for the extended emission in the spatially-resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ~ 6 % relative to their nuclei. We confront the observed trend to photo-dissociation region (PDR) models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [CII]/FIR and {Sigma}_IR with measurements of high-redshift starbursting IR-luminous galaxies.
Ultra-luminous infrared galaxies (ULIRGs) are the most luminous and intense starburst galaxies in the Universe. Both their star-formation rate (SFR) and gas surface mass density are very high, implying a high supernovae rate and an efficient energy c onversion of energetic protons. A small fraction of these supernovae is the so-called hypernovae with a typical kinetic energy ~1e52 erg and a shock velocity >=1e9 cm/s. The strong shocks driven by hypernovae are able to accelerate cosmic ray protons up to 1e17 eV. These energetic protons lose a good fraction of their energy through proton-proton collision when ejected into very dense interstellar medium, and as a result, produce high energy neutrinos (<=5 PeV). Recent deep infrared surveys provide solid constraints on the number density of ULIRGs across a wide redshift range 0<z<2.3, allowing us to derive the flux of diffuse neutrinos from hypernovae. We find that at PeV energies, the diffuse neutrinos contributed by ULIRGs are comparable with the atmosphere neutrinos with the flux of 2e-9GeV cm^-2/s/sr, by assuming the injected cosmic ray power law spectrum with an index of -2.
We have carried out extensive and detailed photoionization modeling to successfully constrain the locations of different emission-line galaxies in optical and mid-infrared diagnostic diagrams. Our model grids cover a wide range in parameter space for the active galaxy continuum and starburst galaxies with different stellar population laws and metallicities. We compare the predicted AGN and star-formation mid-infrared line ratios [Ne III]15.56mm/[Ne II]12.81mm and [O IV]25.89mm/[Ne III]15.56mm to the observed values, and find that the best fit for the AGN is via a two-zone approximation. This two-zone approximation is a combination of a matter-bounded component, where [Ne III] and [O IV] are emitted efficiently, and a radiation-bounded component that maximizes [Ne II] emission. We overlay the predictions from this two-zone approximation onto the optical [O III]l5007/Hbeta and [N II]l6583/Halpha diagnostic diagram derived from the Sloan Digital Sky Survey, to find that the high-density and low-ionization radiation-bounded component in our two-zone AGN approximation model provides a good lower limit for [N II] emission. This establishes a new theoretical demarcation line for the minimum AGN contribution in this diagram. This new classification results by a factor of ~1.4 in a higher AGN population than predictions derived from previous divisions of star-forming galaxies. Similarly, we define a maximum AGN contribution in the [O III]/Hbeta and [N II]/Halpha diagram by using a two-zone approximation within a parameter range typical of the narrow-line region.
We describe a new method of combining optical and infrared photometry to select Luminous Red Galaxies (LRGs) at redshifts $z > 0.6$. We explore this technique using a combination of optical photometry from CFHTLS and HST, infrared photometry from the WISE satellite, and spectroscopic or photometric redshifts from the DEEP2 Galaxy Redshift Survey or COSMOS. We present a variety of methods for testing the success of our selection, and present methods for optimization given a set of rest-frame color and redshift requirements. We have tested this selection in two different regions of the sky, the COSMOS and Extended Groth Strip (EGS) fields, to reduce the effect of cosmic/sample variance. We have used these methods to assemble large samples of LRGs for two different ancillary programs as a part of the SDSS-III/ BOSS spectroscopic survey. This technique is now being used to select $sim$600,000 LRG targets for SDSS-IV/eBOSS, which began observations in Fall 2014, and will be adapted for the proposed DESI survey. We have found these methods can select high-redshift LRGs efficiently with minimal stellar contamination; this is extremely difficult to achieve with selections that rely on optical photometry alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا