ﻻ يوجد ملخص باللغة العربية
Gaia and its complementary spectroscopic surveys combined will yield the most comprehensive database of kinematic and chemical information of stars in the Milky Way. The Gaia FGK benchmark stars play a central role in this matter as they are calibration pillars for the atmospheric parameters and chemical abundances for various surveys. The spectroscopic analyses of the benchmark stars are done by combining different methods, and the results will be affected by the systematic uncertainties inherent in each method. In this paper we explore some of these systematic uncertainties. We determined line abundances of Ca, Cr, Mn and Co for four benchmark stars using six different methods. We changed the default input parameters of the different codes in a systematic way and found in some cases significant differences between the results. Since there is no consensus on the correct values for many of these default parameters, we urge the community to raise discussions towards standard input parameters that could alleviate the difference in abundances obtained by different methods. In this work we provide quantitative estimates of uncertainties in elemental abundances due to the effect of differing technical assumptions in spectrum modelling.
In this contribution talk we summarize the results of our ongoing project of detailed analysis of the chemical content (chemical tagging) as a promising powerful method to provide clear constraints on the membership of FGK kinematic candidates to ste
Context. Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution. Aims. The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the cir
Gaia benchmark stars are selected to be calibration stars for different spectroscopic surveys. Very high-quality and homogeneous spectroscopic data for these stars are therefore required. We collected ultrahigh-resolution ESPRESSO spectra for 30 of t
(Abridged) Extremely metal-poor stars contain the fossil records of the chemical composition of the early Galaxy. The NLTE profiles of the calcium lines were computed in a sample of 53 extremely metal-poor stars with a modified version of the program
Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understandin