ﻻ يوجد ملخص باللغة العربية
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force $F$. We observe that the translocation probability initially increases and then saturates with increasing $F$, independent of $phi$, which is the average density of the whole chain in the nanocontainer. The translocation time distribution undergoes a transition from a Gaussian distribution to an asymmetric distribution with increasing $phi$. Moreover, we find a nonuniversal scaling exponent of the translocation time as chain length, depending on $phi$ and $F$. These results are interpreted by the conformation of the translocated chain in the nanocontainer and the time of an individual segment passing through the pore during translocation.
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone
Using two dimensional Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a fluidic channel with diameter $R$ through a nanopore under a driving force $F$. Due to the crowding effect induced by the partially trans
We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory (IFTP), and extensive molecular dynamics (MD) simulations. We show that in contrast to fully fle
The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem at hand is mapped on a one dimensional
We determine the scaling exponents of polymer translocation (PT) through a nanopore by extensive computer simulations of various microscopic models for chain lengths extending up to N=800 in some cases. We focus on the scaling of the average PT time