ﻻ يوجد ملخص باللغة العربية
Using two dimensional Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a fluidic channel with diameter $R$ through a nanopore under a driving force $F$. Due to the crowding effect induced by the partially translocated monomers, the translocation dynamics is significantly altered in comparison to an unconfined environment, namely, we observe a nonuniversal dependence of the translocation time $tau$ on the chain length $N$. $tau$ initially decreases rapidly and then saturates with increasing $R$, and a dependence of the scaling exponent $alpha$ of $tau$ with $N$ on the channel width $R$ is observed. The otherwise inverse linear scaling of $tau$ with $F$ breaks down and we observe a minimum of $alpha$ as a function of $F$. These behaviors are interpreted in terms of the waiting time of an individual segment passing through the pore during translocation.
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force $F$. We observe that the translocation probability initially increases and then saturates
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone
We determine the scaling exponents of polymer translocation (PT) through a nanopore by extensive computer simulations of various microscopic models for chain lengths extending up to N=800 in some cases. We focus on the scaling of the average PT time
We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory (IFTP), and extensive molecular dynamics (MD) simulations. We show that in contrast to fully fle
The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem at hand is mapped on a one dimensional