ﻻ يوجد ملخص باللغة العربية
We determine the scaling exponents of polymer translocation (PT) through a nanopore by extensive computer simulations of various microscopic models for chain lengths extending up to N=800 in some cases. We focus on the scaling of the average PT time $tau sim N^{alpha}$ and the mean-square change of the PT coordinate $<s^2(t)> sim t^beta$. We find $alpha=1+2 u$ and $beta=2/alpha$ for unbiased PT in 2D and 3D. The relation $alpha beta=2$ holds for driven PT in 2D, with crossover from $alpha approx 2 u$ for short chains to $alpha approx 1+ u$ for long chains. This crossover is, however, absent in 3D where $alpha = 1.42 pm 0.01$ and $alpha beta approx 2.2$ for $N approx 40-800$.
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone
The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem at hand is mapped on a one dimensional
We investigate several scaling properties of a translocating homopolymer through a thin pore driven by an external field present inside the pore only using Langevin Dynamics (LD) simulation in three dimension (3D). Specifically motivated by several r
Using Langevin dynamics simulations, we investigate the influence of polymer-pore interactions on the dynamics of biopolymer translocation through nanopores. We find that an attractive interaction can significantly change the translocation dynamics.
We investigate the dynamics of DNA translocation through a nanopore using 2D Langevin dynamics simulations, focusing on the dependence of the translocation dynamics on the details of DNA sequences. The DNA molecules studied in this work are built fro